Effect of exogenous abscisic acid on the level of antioxidants in Atractylodes macrocephala Koidz under lead stress

MOE Laboratory of Plant-Soil Interaction and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China, .
Environmental Science and Pollution Research (Impact Factor: 2.83). 07/2012; 20(3). DOI: 10.1007/s11356-012-1048-0
Source: PubMed


This study hypothesized that the positive or negative effects of exogenous abscisic acid (ABA) on oxidative stress caused by lead were dose dependent. The effects of different levels of ABA (2.5, 5, and 10 mg L(-1)) on lead toxicity in the leaves of Atractylodes macrocephala were studied by investigating plant growth, soluble sugars, proteins, lipid peroxidation, and antioxidative enzymes. Excess Pb inhibited root dry weight, root length, and the number of lateral roots, but increased shoot growth. In addition, lead stress significantly decreased the levels of chlorophyll pigments, protein, and activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD). Different levels of ABA significantly increased SOD, CAT, POD, and APX activities, but decreased the level of hydrogen peroxide and malondialdehyde in nonstressed plants. Exogenous application of 2.5 mg L(-1) ABA detoxified the stress-generated damages caused by Pb and also enhanced plant growth, soluble sugars, proteins, and all four antioxidant enzyme activities but reduced Pb uptake of lead-stressed plant compared to lead treatment alone. However, the toxic effects of Pb were further increased by the applications of 5 and 10 mg L(-1) ABA. The levels of antioxidants caused by a low concentration of exogenous ABA might be responsible for minimizing the Pb-induced toxicity in A. macrocephala.

20 Reads
    • "* Correlation is significant at the 0.05 level, * * Correlation is significant at the 0.01 level, * * * Correlation is significant at the 0.001 level chloroplasts, thus reducing the deleterious effect of metal ions to cells (Wang et al. 2013). (2) The significantly increase in glutathione S-transferase enzyme that transfers glutathione to the toxic compounds and decrease glutathione content may be deduced by its consumption in glutathione S-transferase and in phytochelatin synthesis as a precursor of phytochelatin or in binding with heavy metals (Lin and Aarts 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A study was carried out to identify the mechanisms underlying stress caused by Cd and Pb accumulation in leaves of Atriplex halimus L. collected from habitats representing different kinds of pollution. Mean concentrations of Cd and Pb in aerial parts exceeded the critical levels in polluted plants as compared to reference plants. There were significant reduction in guiacol peroxidase, ascorbate peroxidase and glutathione content in most of polluted plants. The results showed increase in superoxide dismutase enzyme in all polluted plants. The significant increment in catalase enzyme, glutathione S-transeferase and ascorbic acid content were observed in most of polluted plants. Results of the nine differential expressed bands showed down regulation of NADH dehydrogenase and Sedoheptulose-bisphosphatase in polluted plants. In contrast, there were six regulated genes in highly polluted plants, representing transcription factors, membrane transporters and ROS detoxification. The transcription level of phytochelatin synthase showed a significant increase in all polluted plants, while heavy metal ATPase transporter expression significantly increased in some polluted plants. In conclusion, A. halimus may use two different strategies against Cd and Pb stress, in which the molecular and physiological features affords similar levels of Cd and Pb tolerance through binding, sequestration and the reduction of harmful effect of heavy metals.
    International Journal of Phytoremediation 06/2015; 17(9):789-800. DOI:10.1080/15226514.2014.964844 · 1.74 Impact Factor
    • "The rhizome of A. macrocephala is an important ingredient of several chinese herbal prescriptions, and has been used in drugs for diarrhea, abdominal pain, and insufficiency of the stomach, intestine, liver, kidney, or insufficiency of the spleen with abundance of dampness. Many components, such as volatile oils, sesquiterpenoids, polysaccharides, amino acids, vitamins, resins and other ingredients have been found in Atractylodes macrocephala up to now.[45678] The essential oil as the major constituent has been isolated from A. macrocephala and has several pharmacological functions.[9] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Atractylodes macrocephala, a famous herbal medicine, is used extensively in the practice of Traditional Chinese Medicine (TCM). Processing procedure is a common approach that usually occurs before A. macrocephala is prescribed. This paper describes a sensitive and specific assay for the determination of principal volatile compounds in crude and processed A. macrocephala. Materials and Methods: The present study concentrated on the development of a static headspace gas chromatography-mass spectrometry (SHS-GC/MS) for separating and identifying of volatile compounds from crude and processed A. macrocephala samples. Results: The results showed that the volatile oil in crude and processed A. macrocephala was markedly quantitatively and qualitatively different. Processing resulted in the reduction of volatile oil contents and variation of chemical compositions in A. macrocephala. Conclusion: The proposed method proved that SHS-GC/MS is rapid and specific, and should also be useful for evaluating the quality of crude and processed medicinal herbs.
    Pharmacognosy Magazine 07/2014; 10(39):249-53. DOI:10.4103/0973-1296.137364 · 1.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0-12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.
    Environmental Science and Pollution Research 06/2013; 21(1). DOI:10.1007/s11356-013-1942-0 · 2.83 Impact Factor
Show more

Similar Publications