Probing the Transport of Ionic Liquids in Aqueous Solution through Nanopores

Journal of Physical Chemistry Letters (Impact Factor: 7.46). 08/2011; 2(18):2331-2336. DOI: 10.1016/j.bpj.2011.11.1118


The temperature-dependent transport of the ionic liquid 1-butyl-3-methyl-imidazolium chloride (BMIM-Cl) in aqueous solution is studied theoretically and experimentally. Using molecular dynamics simulations and ion-conductance measurements, the transport is examined in bulk as well as through a biological nanopore, that is, OmpF and its mutant D113A. This investigation is motivated by the observation that aqueous solutions of BMIM-Cl drastically reduce the translocation speed of DNA or antibiotics through nanopores in electrophysiological measurements. This makes BMIM-Cl an interesting alternative salt to improve the time resolution. In line with previous investigations of simple salts, the size of the ions and their orientation adds another important degree of freedom to the ion transport, thereby slowing the transport through nanopores. An excellent agreement between theory and conductance measurements is obtained for wild type OmpF and a reasonable agreement for the mutant. Moreover, all-atom simulations allow an atomistic analysis revealing molecular details of the rate-limiting ion interactions with the channel.

Download full-text


Available from: Mathias Winterhalter, Sep 17, 2015
14 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The TOM protein complex facilitates the transfer of nearly all mitochondrial preproteins across outer mitochondrial membranes. Here we characterized the effect of temperature on facilitated translocation of a mitochondrial presequence peptide pF1 beta. Ion current fluctuations analysis through single TOM channels revealed thermodynamic and kinetic parameters of substrate binding and allowed determining the energy profile of peptide translocation. The activation energy for the on-rate and off-rate of the presequence peptide into the TOM complex was symmetric with respect to the electric field and estimated to be about 15 and 22 kT per peptide. These values are above that expected for free diffusion of ions in water (6 kT) and reflect the stronger interaction in the channel. Both values are in the range for typical enzyme kinetics and suggest one process without involving large conformational changes within the channel protein.
    Journal of Physical Chemistry Letters 12/2012; 4(1):78-82. DOI:10.1021/jz301790h · 7.46 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Single channel electrophysiological studies have been carried out to elucidate the underlying interactions during the translocation of polypeptides through protein channels. For this we used OmpF from the outer cell membrane of E. coli and arginine-based peptides of different charges, lengths and covalently linked polyethylene glycol as a model system. In order to reveal the fast kinetics of peptide binding, we performed a temperature scan. Together with the voltage-dependent single-channel conductance, we quantify peptide binding and translocation.
    Biophysics of Structure and Mechanism 12/2012; 42(5). DOI:10.1007/s00249-012-0885-6 · 2.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nanopore sensors have emerged as a label-free and amplification-free technique for measuring single molecules. First proposed in the mid-1990s, nanopore detection takes advantage of the ionic current modulations produced by the passage of target analytes through a single nanopore at a fixed applied potential. Over the last 15 years, these nanoscale pores have been used to sequence DNA, to study covalent and non-covalent bonding interactions, to investigate biomolecular folding and unfolding, and for other applications. A major issue in the application of nanopore sensors is the rapid transport of target analyte molecules through the nanopore. Current recording techniques do not always accurately detect these rapid events. Therefore, researchers have looked for methods that slow molecular and ionic transport. Thus far, several strategies can improve the resolution and sensitivity of nanopore sensors including variation of the experimental conditions, use of a host compound, and modification of the analyte molecule and the nanopore sensor. In this Account, we highlight our recent research efforts that have focused on applications of nanopore sensors including the differentiation of chiral molecules, the study of enzyme kinetics, and the determination of sample purity and composition. Then we summarize our efforts to regulate molecular transport. We show that the introduction of various surface functional groups such as hydrophobic, aromatic, positively charged, and negatively charged residues in the nanopore interior, an increase in the ionic strength of the electrolyte solution, and the use of ionic liquid solutions as the electrolyte instead of inorganic salts may improve the resolution and sensitivity of nanopore stochastic sensors. Our experiments also demonstrate that the introduction of multiple functional groups into a single nanopore and the development of a pattern-recognition nanopore sensor array could further enhance sensor resolution. Although we have demonstrated the feasibility of nanopore sensors for various applications, challenges remain before nanopore sensing is deployed for routine use in applications such as medical diagnosis, homeland security, pharmaceutical screening, and environmental monitoring.
    Accounts of Chemical Research 04/2013; 46(12). DOI:10.1021/ar400031x · 22.32 Impact Factor
Show more