Brain-penetrant LSD1 inhibitors can block memory consolidation.

Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, United States.
ACS Chemical Neuroscience (Impact Factor: 4.21). 02/2012; 3(2):120-128. DOI: 10.1021/cn200104y
Source: PubMed

ABSTRACT Modulation of histone modifications in the brain may represent a new mechanism for brain disorder therapy. Post-translational modifications of histones regulate gene expression, affecting major cellular processes such as proliferation, differentiation, and function. An important enzyme involved in one of these histone modifications is lysine specific demethylase 1 (LSD1). This enzyme is flavin-dependent and exhibits homology to amine oxidases. Parnate (2-phenylcyclopropylamine (2-PCPA); tranylcypromine) is a potent inhibitor of monoamine oxidases and derivatives of 2-PCPA have been used for development of selective LSD1 inhibitors based on the ability to form covalent adducts with flavin adenine dinucleotide (FAD). Here we report the synthesis and in vitro characterization of LSD1 inhibitors that bond covalently to FAD. The two most potent and selective inhibitors were used to demonstrate brain penetration when administered systemically to rodents. First, radiosynthesis of a positron-emitting analog was used to obtain preliminary bio-distribution data and whole brain time-activity curves. Second, we demonstrate that this series of LSD1 inhibitors is capable of producing a cognitive effect in a mouse model. By using a memory formation paradigm, novel object recognition, we show that LSD1 inhibition can abolish long-term memory formation without affecting short-term memory, providing further evidence for the importance of reversible histone methylation in the function of the nervous system.

Download full-text


Available from: Stephen J Haggarty, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Histone demethylase KDM1A (also known as LSD1) has become an attractive therapeutic target for the treatment of cancer as well as other disorders such as viral infections. We report on the synthesis of compounds derived from the expansion of tranylcypromine as a chemical scaffold for the design of novel demethylase inhibitors. These compounds, which are substituted on the cyclopropyl core moiety, were evaluated for their ability to inhibit KDM1A in vitro as well as to function in cells by modulating the expression of Gfi-1b, a well recognized KDM1A target gene. The molecules were all found to covalently inhibit KDM1A and to become increasingly selective against human monoamine oxidases MAO A and MAO B through the introduction of bulkier substituents on the cyclopropylamine ring. Structural and biochemical analysis of selected trans isomers showed that the two stereoisomers are endowed with similar inhibitory activities against KDM1A, but form different covalent adducts with the FAD co-enzyme.
    European Journal of Medicinal Chemistry 08/2014; 86C:352-363. DOI:10.1016/j.ejmech.2014.08.068 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Covalent modifications, such as methylation and demethylation of lysine residues in histones, play important roles in chromatin dynamics and the regulation of gene expression. The lysine demethylases (KDMs) catalyze the demethylation of lysine residues on histone tails and are associated with diverse human diseases, including cancer, and are therefore proposed as targets for the therapeutic modulation of gene transcription. High-throughput assays have been developed to find inhibitors of KDMs, most of which are fluorescence-based assays. Here we report the development of a coupled scintillation proximity assay (SPA) for 3 KDMs: KDM1A (LSD1), KDM3A (JMJD1A) and KDM4A (JMJD2A). In this assay methylated peptides are first demethylated by a KDM, and a protein methyltransferase (PMT) is added to methylate the resulting peptide with tritiated SAM. The enzyme activities were optimized and kinetic parameters were determined. These robust coupled assays are suitable for screening KDMs in 384-well format (Z'-Factors of 0.70-0.80) facilitating discovery of inhibitors in the quest for cancer therapeutics.
    Analytical Biochemistry 07/2014; 463. DOI:10.1016/j.ab.2014.06.023 · 2.31 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder and bipolar disorder, where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzmyes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and benefically impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencng (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent (iPS) cell and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticty. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.
    Neuroscience 01/2013; 264. DOI:10.1016/j.neuroscience.2013.01.041 · 3.33 Impact Factor