Article

A New View on Biodynamic Feedthrough Analysis: Unifying the Effects on Forces and Positions.

ABSTRACT When performing a manual control task, vehicle accelerations can cause involuntary limb motions, which can result in unintentional control inputs. This phenomenon is called biodynamic feedthrough (BDFT). In the past decades, many studies into BDFT have been performed, but its fundamentals are still only poorly understood. What has become clear, though, is that BDFT is a highly complex process, and its occurrence is influenced by many different factors. A particularly challenging topic in BDFT research is the role of the human operator, which is not only a very complex but also a highly adaptive system. In literature, two different ways of measuring and analyzing BDFT are reported. One considers the transfer of accelerations to involuntary forces applied to the control device (CD); the other considers the transfer of accelerations to involuntary CD deflections or positions. The goal of this paper is to describe an approach to unify these two methods. It will be shown how the results of the two methods relate and how this knowledge may aid in understanding BDFT better as a whole. The approach presented is based on the notion that BDFT dynamics can be described by the combination of two transfer dynamics: 1) the transfer dynamics from body accelerations to involuntary forces and 2) the transfer dynamics from forces to CD deflections. The approach was validated using experimental results.

1 Follower
 · 
126 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biodynamic feedthrough (BDFT) is a complex phenomenon, that has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, the framework for BDFT analysis, as presented in Part I of this dual publication, is validated and applied. The goal of this framework is twofold. First of all, it provides some common ground between the seemingly large range of different approaches existing in BDFT literature. Secondly, the framework itself allows for gaining new insights into BDFT phenomena. Using recently obtained measurement data, parts of the framework that were not already addressed elsewhere, are validated. As an example of a practical application of the framework, it will be demonstrated how the effects of control device dynamics on BDFT can be understood and accurately predicted. Other ways of employing the framework are illustrated by interpreting the results of three selected studies from the literature using the BDFT framework. The presentation of the BDFT framework is divided into two parts. This paper, Part II, addresses the validation and application of the framework. Part I, which is also published in this journal issue, addresses the theoretical foundations of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework’s theoretical background and its validation.
    09/2014; 44(9):1699-1710. DOI:10.1109/TCYB.2014.2336375
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biodynamic feedthrough (BDFT) is a complex phenomenon, which has been studied for several decades. However, there is little consensus on how to approach the BDFT problem in terms of definitions, nomenclature, and mathematical descriptions. In this paper, a framework for biodynamic feedthrough analysis is presented. The goal of this framework is two-fold. First, it provides some common ground between the seemingly large range of different approaches existing in the BDFT literature. Second, the framework itself allows for gaining new insights into BDFT phenomena. It will be shown how relevant signals can be obtained from measurement, how different BDFT dynamics can be derived from them, and how these different dynamics are related. Using the framework, BDFT can be dissected into several dynamical relationships, each relevant in understanding BDFT phenomena in more detail. The presentation of the BDFT framework is divided into two parts. This paper, Part I, addresses the theoretical foundations of the framework. Part II, which is also published in this issue, addresses the validation of the framework. The work is presented in two separate papers to allow for a detailed discussion of both the framework's theoretical background and its validation.
    05/2014; DOI:10.1109/TCYB.2014.2311043
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the experimental data of human mechanical impedance properties (HMIPs) of the arms measured in steering operations according to the angle of a steering wheel (limbs posture) and the steering torque (muscle cocontraction). The HMIP data show that human stiffness/viscosity has the minimum/maximum value at the neutral angle of the steering wheel in relax (standard condition) and increases/decreases for the amplitude of the steering angle and the torque, and that the stability of the arms' motion in handling the steering wheel becomes high around the standard condition. Next, a novel methodology for designing an adaptive steering control system based on the HMIPs of the arms is proposed, and the effectiveness was then demonstrated via a set of double-lane-change tests, with several subjects using the originally developed stationary driving simulator and the 4-DOF driving simulator with a movable cockpit.
    IEEE Transactions on Intelligent Transportation Systems 08/2014; 15(4):1758-1769. DOI:10.1109/TITS.2014.2312458 · 2.47 Impact Factor