Structure of the RBD-PRDI fragment of the antiterminator protein GlcT.

Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
Acta Crystallographica Section F Structural Biology and Crystallization Communications (Impact Factor: 0.55). 07/2012; 68(Pt 7):751-6. DOI: 10.1107/S1744309112020635
Source: PubMed

ABSTRACT GlcT is a transcriptional antiterminator protein that is involved in regulation of glucose metabolism in Bacillus subtilis. Antiterminator proteins bind specific RNA sequences, thus preventing the formation of overlapping terminator stem-loops. The structure of a fragment (residues 3-170) comprising the RNA-binding domain (RBD) and the first regulatory domain (PRDI) of GlcT was solved at 2.0 Å resolution with one molecule in the asymmetric unit. The two domains are connected by a helical linker. Their interface is mostly constituted by hydrophobic interactions.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous gram-negative and gram-positive bacteria take up carbohydrates through the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS). This system transports and phosphorylates carbohydrates at the expense of PEP and is the subject of this review. The PTS consists of two general proteins, enzyme I and HPr, and a number of carbohydrate-specific enzymes, the enzymes II. PTS proteins are phosphoproteins in which the phospho group is attached to either a histidine residue or, in a number of cases, a cysteine residue. After phosphorylation of enzyme I by PEP, the phospho group is transferred to HPr. The enzymes II are required for the transport of the carbohydrates across the membrane and the transfer of the phospho group from phospho-HPr to the carbohydrates. Biochemical, structural, and molecular genetic studies have shown that the various enzymes II have the same basic structure. Each enzyme II consists of domains for specific functions, e.g., binding of the carbohydrate or phosphorylation. Each enzyme II complex can consist of one to four different polypeptides. The enzymes II can be placed into at least four classes on the basis of sequence similarity. The genetics of the PTS is complex, and the expression of PTS proteins is intricately regulated because of the central roles of these proteins in nutrient acquisition. In addition to classical induction-repression mechanisms involving repressor and activator proteins, other types of regulation, such as antitermination, have been observed in some PTSs. Apart from their role in carbohydrate transport, PTS proteins are involved in chemotaxis toward PTS carbohydrates. Furthermore, the IIAGlc protein, part of the glucose-specific PTS, is a central regulatory protein which in its nonphosphorylated form can bind to and inhibit several non-PTS uptake systems and thus prevent entry of inducers. In its phosphorylated form, P-IIAGlc is involved in the activation of adenylate cyclase and thus in the regulation of gene expression. By sensing the presence of PTS carbohydrates in the medium and adjusting the phosphorylation state of IIAGlc, cells can adapt quickly to changing conditions in the environment. In gram-positive bacteria, it has been demonstrated that HPr can be phosphorylated by ATP on a serine residue and this modification may perform a regulatory function.
    Microbiological reviews 10/1993; 57(3):543-94.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SacY is the prototype of a family of regulatory proteins able to prevent transcription termination. It interacts with a 29 nucleotide RNA sequence able to fold into a stem-loop structure and partially overlapping with a terminator sequence located in the 5' leader mRNA region of the gene it controls. We show here that the N-terminal fragment of SacY, SacY(1-55), and the corresponding fragments of other members of the family have antiterminator activities with efficiency and specificity identical to those of the full-length proteins. In vitro, this activity correlates with the specific affinity of SacY(1-55) for its RNA target. UV melting experiments demonstrate that SacY(1-55) binding stabilizes the RNA target structure. The NMR solution structure of SacY(1-55) is very similar to that obtained in the crystal (van Tilbeurgh et al., 1997): the peptide is folded as a symmetrical dimer without any structural homology with other RNA-binding domains yet characterized. According to a preliminary NMR analysis of the SacY(1-55)-RNA complex, the protein dimer is not disrupted upon RNA binding and several residues implicated in RNA recognition are located at the edge of the dimer interface. This suggests a new mode of protein-RNA interaction.
    The EMBO Journal 09/1997; 16(16):5019-29. · 9.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SacY belongs to a family of, at present, seven bacterial transcriptional antiterminators. The RNA-binding and antitermination capacity of SacY resides in the 55 amino acids at the N-terminal [SacY(1-55)]. The crystal structure at 2 A resolution shows that SacY(1-55) forms a dimer in the crystal, in accordance with the NMR solution structure. The structure of the monomer is a four-stranded beta-sheet with a simple beta1beta2beta3beta4 topology. One side of the sheet is covered by a long surface loop and the other side forms the dimer interface. The dimer is stabilized by the orthogonal stacking of the two beta-sheets. The crystal structure is in excellent agreement with the NMR solution structure (r.m.s. distance for C alpha coordinates is 1.3 A). The structure of SacY(1-55) reveals a new RNA-binding motif.
    The EMBO Journal 09/1997; 16(16):5030-6. · 9.82 Impact Factor