Crystal structure of type VI effector Tse1 from Pseudomonas aeruginosa

State Key Laboratory of Protein and Plant Gene Research, and Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Beijing 100871, China
FEBS letters (Impact Factor: 3.17). 06/2012; 586(19):3193-9. DOI: 10.1016/j.febslet.2012.06.036
Source: PubMed


The type VI secretion systems (T6SS) have emerging roles in interspecies competition. In order to have an advantage in defense against other organisms, this system in Pseudomonas aeruginosa delivers a peptidoglycan amidase (Tse1) to the periplasmic space of a competitor. An immune protein (Tsi1) is also produced by the bacterium to protect itself from damage caused by Tse1. Tsi1 directly interacts with Tse1. We report that the crystal structure of Tse1 displays a common CHAP protein fold. Strikingly, our structures showed that the third residue in the catalytic triad may be novel as this residue type has not been observed previously.

Download full-text


Available from: Xiao-Dong Su, Sep 06, 2015
4 Reads
  • Source
    • "Thus, Tae4 adopts the classical papain-like fold of cysteine peptidases of the NlpC/P60 family [18]. A DALI search [19] revealed that aside from the evident homology to the homologous Tae4 from E. cloacae [17] (r.m.s.d of 1.5 Å and 54% sequence identity) the related peptidoglycan hydrolase effector Tse1 from P. aeruginosa [14], [15], [16], [20], [21] (r.m.s.d of 3.6 Å and 16% sequence identity) and the functionally unrelated NlpC/P60 domain of YkfC from Bacillus cereus [22] (r.m.s.d of 3.7 Å and 12% sequence identity) are the closest structural homologs of Tae4 from S. typhimurium. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Type-6-secretion systems of Gram-negative bacteria are widely distributed needle-like multi-protein complexes that are involved in microbial defense mechanisms. During bacterial competition these injection needles dispense effector proteins into the periplasm of competing bacteria where they induce degradation of the peptidoglycan scaffold and lead to cell lysis. Donor cells co-produce immunity proteins and shuttle them into their own periplasm to prevent accidental toxication by siblings. Recently, a plethora of previously unidentified hydrolases have been suggested to be peptidoglycan degrading amidases. These hydrolases are part of effector/immunity pairs that have been associated with bacterial warfare by type-6-secretion systems. The Tae4 and Tai4 operon encoded by Salmonella typhimurium is one of these newly discovered effector/immunity pairs. The Tae4 effector proteins induce cell lysis by cleaving the γ-D-glutamyl-L-meso-diaminopimelic acid amide bond of acceptor stem muropeptides of the Gram-negative peptidoglycan. Although homologues of the Tae4/Tai4 system have been identified in various different pathogens, little is known about the functional mechanism of effector protein activity and their inhibition by the cognate immunity proteins. Here, we present the high-resolution crystal structure of the effector Tae4 of S. typhimurium in complex with its immunity protein Tai4. We show that Tae4 contains a classical NlpC/P60-peptidase core which is common to other effector proteins of the type-6-secretion system. However, Tae4 has unique structural features that are exclusively conserved within the family of Tae4 effectors and which are important for the substrate specificity. Most importantly, we show that although the overall structure of Tai4 is different to previously described immunity proteins, the essential mode of enzyme inhibition is conserved. Additionally, we provide evidence that inhibition in the Tae4/Tai4 heterotetramer relies on a central Tai4 dimer in order to acquire functionality.
    PLoS ONE 06/2013; 8(6):e67362. DOI:10.1371/journal.pone.0067362 · 3.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Pseudomonas aeruginosa three type VI secretion systems (T6SSs) coexist, called H1- to H3-T6SSs. Several T6SS components are proposed to be part of a macromolecular complex resembling the bacteriophage tail. The T6SS protein HsiE1 (TagJ) is unique to the H1-T6SS and absent from the H2- and H3-T6SSs. We demonstrate that HsiE1 interacts with a predicted N-terminal α-helix in HsiB1 (TssB) thus forming a novel subcomplex of the T6SS. HsiB1 is homologous to the Vibrio cholerae VipA component, which contributes to the formation of a bacteriophage tail sheath-like structure. We show that the interaction between HsiE1 and HsiB1 is specific and does not occur between HsiE1 and HsiB2. Proteins of the TssB family encoded in T6SS clusters lacking a gene encoding a TagJ-like component are often devoid of the predicted N-terminal helical region, which suggests co-evolution. We observe that a synthetic peptide corresponding to the N-terminal 20 amino acids of HsiB1 interacts with purified HsiE1 protein. This interaction is a common feature to other bacterial T6SSs that display a TagJ homologue as shown here with Serratia marcescens. We further show that hsiE1 is a non-essential gene for the T6SS and suggest that HsiE1 may modulate incorporation of HsiB1 into the T6SS.
    Molecular Microbiology 08/2012; 86(2):437-56. DOI:10.1111/j.1365-2958.2012.08204.x · 4.42 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The type VI secretion system (T6SS), a multi-subunit needle-like apparatus, has been recently found to play a role in interspecies interactions. The Gram-negative bacteria harboring T6SS (donor) deliver the effectors into their neighboring cells (recipient) to kill them. Meanwhile, the cognate immunity proteins were employed to protect the donor cells against the toxic effectors. Tae4 (type VI amidase effector 4) and Tai4 (type VI amidase immunity 4) are newly identified T6SS effector-immunity pairs. Here, we report the crystal structures of Tae4 from Enterobacter cloacae and Tae4-Tai4 complexes from both Enterobacter cloacae and Salmonella typhimurium. Tae4 acts as a DL-endopeptidase and displays a typical N1pC/P60 domain. Unlike Tsi1 (type VI secretion immunity 1), Tai4 is an all-helical protein and forms a dimer in solution. The small-angle X-ray scattering (SAXS) study combined with the analytical ultracentrifugation reveal that the Tae4-Tai4 complex is a compact heterotetramer which consists of a Tai4 dimer and two Tae4 molecules in solution. Structure-based mutational analysis of the Tae4-Tai4 interface shows that a helix (α3) of one subunit in dimeric Tai4 plays a major role in binding of Tae4, whereas a protruding loop (L4) in the other subunit is mainly responsible for inhibiting Tae4 activity. The inhibition process requires collaboration between the Tai4 dimer. These results reveal a novel and unique inhibition mechanism in effector-immunity pairs and suggest a new strategy to develop anti-pathogen drugs.
    Journal of Biological Chemistry 01/2013; 288(8). DOI:10.1074/jbc.M112.434357 · 4.57 Impact Factor
Show more