Caveolin-1 suppresses Human Immunodeficiency virus-1 replication by inhibiting acetylation of NF-κB

Department of Microbiology and Immunology, Meharry Medical College, Nashville, TN 37208, USA.
Virology (Impact Factor: 3.28). 06/2012; 432(1):110-9. DOI: 10.1016/j.virol.2012.05.016
Source: PubMed

ABSTRACT Caveolin-1 is an integral membrane protein primarily responsible for the formation of membrane structures known as caveolae. Caveolae are specialized lipid rafts involved in protein trafficking, cholesterol homeostasis, and a number of signaling functions. It has been demonstrated that caveolin-1 suppresses HIV-1 protein expression. We found that co-transfecting cells with HIV-1 and caveolin-1 constructs, results in a marked decrease in the level of HIV-1 transcription relative to cells transfected with HIV-1 DNA alone. Correspondingly, reduction of endogenous caveolin-1 expression by siRNA-mediated silencing resulted in an enhancement of HIV-1 replication. Further, we observed a loss of caveolin-mediated suppression of HIV-1 transcription in promoter studies with reporters containing mutations in the NF-κB binding site. Our analysis of the posttranslational modification status of the p65 subunit of NF-κB demonstrates hypoacetylation of p65 in the presence of caveolin-1. Since hypoacetylated p65 has been shown to inhibit transcription, we conclude that caveolin-1 inhibits HIV-1 transcription through a NF-κB-dependent mechanism.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Senescent endothelial cells (EC) have been identified in cardiovascular disease, in angiogenic tumour associated vessels and in aged individuals. We have previously identified a novel anti-inflammatory senescent phenotype of EC. We show here that caveolae are critical in the induction of this anti-inflammatory senescent state. Senescent EC induced by either the overexpression of ARHGAP18/SENEX or by H2 O2 showed significantly increased numbers of caveolae and associated proteins Caveolin-1, cavin-1 and cavin-2. Depletion of these proteins by RNA interference decreased senescence induced by ARHGAP18 and by H2 O2 . ARHGAP18 overexpression induced a predominantly anti-inflammatory senescent population and depletion of the caveolae-associated proteins resulted in the preferential reduction in this senescent population as measured by neutrophil adhesion and adhesion protein expression after TNFα treatment. In confirmation, EC isolated from the aortas of CAV-1(-/-) mice failed to induce this anti-inflammatory senescent cell population upon expression of ARHGAP18, whereas EC from wild-type mice showed a significant increase. NF-κB is one of the major transcription factors mediating the induction of E-selectin and VCAM-1 expression, adhesion molecules responsible for leucocyte attachment to EC. TNFα-induced activation of NF-κB was suppressed in ARHGAP18-induced senescent EC, and this inhibition was reversed by Caveolin-1 knock-down. Thus, out results demonstrate that an increase in caveolae and its component proteins in senescent ECs is associated with inhibition of the NF-kB signalling pathway and promotion of the anti-inflammatory senescent pathway. © 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
    Aging Cell 11/2014; 14(1). DOI:10.1111/acel.12270 · 5.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Caveolin-1 (Cav-1) is the major protein of the caveolae and plays a role in multiple cellular functions and implicated to have anti-HIV activity. Regulated expression of Cav-1 is important for safe and effective use in order to exploit Cav-1 for HIV therapeutic applications. A series of Cav-1 and GFP expression vectors were constructed under the control of the HIV LTR for conditional expression or CMV promoter and the expression of Cav-1 was monitored in the presence or absence of Tat or HIV infection in order to establish the restricted expression of Cav-1 to HIV infected cells. Cav-1 expression was evident under the control of the HIV LTR in the absence of Tat or HIV infection as demonstrated by immunoblot. Placing two internal ribosomal entry sequences (IRES) and a Rev response element, RRE (5'~ LTR-IRES-GFP-RRE-IRES-Cav-1~3') resulted in no expression of Cav-1 in the absence of Tat with effective expression in the presence of Tat. Transduction of HIV permissive cells with this construct using a foamy virus vector show that Cav-1 was able to inhibit HIV replication by 82%. Cells that received LTR-IRES-GFP-RRE-IRES-Cav-1 remain healthy in the absence of Tat or HIV infection. These results taken together reveal the inclusion of two IRES establishes a significant reduction of leak through expression of Cav-1 in the absence of Tat or HIV infection. Such regulated expression will have therapeutic application of Cav-1 for HIV infection as well as broad applications which can be beneficial for other host-targeted interventions as therapeutics.
    The Open Microbiology Journal 10/2014; 8(1):114-21. DOI:10.2174/1874285801408010114
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The deciphering of cellular networks to determine susceptibility to infection by HIV or the related simian immunodeficiency virus (SIV) is a major challenge in infection biology. Here, we have compared gene expression profiles of a human CD4+ T cell line at 24 h after infection with a cell line of the same origin permanently releasing SIVmac. A new knowledge-based-network approach (Inter-Chain-Finder, ICF) has been used to identify sub-networks associated with cell survival of a chronically SIV-infected T cell line. Notably, the method can identify not only differentially expressed key hub genes but also non-differentially expressed, critical, ‘hidden’ regulators. Six out of the 13 predicted major hidden key regulators were among the landscape of proteins known to interact with HIV. Several sub-networks were dysregulated upon chronic infection with SIV. Most prominently, factors reported to be engaged in early stages of acute viral infection were affected, e.g. entry, integration and provirus transcription and other cellular responses such as apoptosis and proliferation were modulated. For experimental validation of the gene expression analyses and computational predictions, individual pathways/sub-networks and significantly altered key regulators were investigated further. We showed that the expression of caveolin-1 (Cav-1), the top hub in the affected protein-protein interaction network, was significantly upregulated in chronically SIV-infected CD4+ T cells. Cav-1 is the main determinant of caveolae and a central component of several signal transduction pathways. Furthermore, CD4 downregulation and modulation of the expression of alternate and co-receptors as well as pathways associated with viral integration into the genome were also observed in these cells. Putatively, these modifications interfere with re-infection and the early replication cycle and inhibit cell death provoked by syncytia formation and bystander apoptosis. Thus, by using the novel approach for network analysis, ICF, we predict that in the T cell line chronically infected with SIV, cellular processes that are known to be crucial for early phases of HIV /SIV replication are altered and cellular responses that result in cell death are modulated. These modifications presumably contribute to cell survival despite chronic infection.
    Virology Journal 08/2014; 11:152. DOI:10.1186/1743-422X-11-152 · 2.09 Impact Factor