Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

Department of Pharmacology, Brain Science & Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Daegu, Joong-gu, 700-422, South Korea.
Journal of Neuroinflammation (Impact Factor: 5.41). 06/2012; 9(1):149. DOI: 10.1186/1742-2094-9-149
Source: PubMed


Plasminogen activator inhibitor type 1 (PAI-1) is the primary inhibitor of urokinase type plasminogen activators (uPA) and tissue type plasminogen activators (tPA), which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system.
In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles.
The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP) 1/Janus kinase (JAK)/signal transducer and activator of transcription (STAT)1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner.
Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

23 Reads
  • Source
    • "The following day, a 200-μl tip was used to scratch the surface of the cell culture, and the recovery width of the scratched surface was then measured at nine marked sites.22, 23 Microglia were pre-incubated with antagonists for 30 min before the addition of the conditioned medium to the culture medium. After a further 18-h incubation, the recovery width of the scratched surface was re-measured at the nine marked sites for each independent experiment, and the mean values were calculated. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic neuroinflammation is an integral pathological feature of major neurodegenerative diseases. The recruitment of microglia to affected brain regions and the activation of these cells are the major events leading to disease-associated neuroinflammation. In a previous study, we showed that neuron-released α-synuclein can activate microglia through activating the Toll-like receptor 2 (TLR2) pathway, resulting in proinflammatory responses. However, it is not clear whether other signaling pathways are involved in the migration and activation of microglia in response to neuron-released α-synuclein. In the current study, we demonstrated that TLR2 activation is not sufficient for all of the changes manifested by microglia in response to neuron-released α-synuclein. Specifically, the migration of and morphological changes in microglia, triggered by neuron-released α-synuclein, did not require the activation of TLR2, whereas increased proliferation and production of cytokines were strictly under the control of TLR2. Construction of a hypothetical signaling network using computational tools and experimental validation with various peptide inhibitors showed that β1-integrin was necessary for both the morphological changes and the migration. However, neither proliferation nor cytokine production by microglia was dependent on the activation of β1-integrin. These results suggest that β1-integrin signaling is specifically responsible for the recruitment of microglia to the disease-affected brain regions, where neurons most likely release relatively high levels of α-synuclein.
    Experimental and Molecular Medicine 04/2014; 46(4):e91. DOI:10.1038/emm.2014.6 · 3.45 Impact Factor
  • Source
    • "2c). Similarly, the cell migration speed as described previously [29], was unaltered after acoustophoretic processing at 24 to 48 h after culturing (data not shown). The cellular changes over a longer time period (7 days) was also assessed to study a possible alteration in cell turnover using a clonogenic assay however, no adverse effect were detected (fig. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The use of acoustic forces to manipulate particles or cells at the microfluidic scale (i.e. acoustophoresis), enables non-contact, label-free separation based on intrinsic cell properties such as size, density and compressibility. Acoustophoresis holds great promise as a cell separation technique in several research and clinical areas. However, it has been suggested that the force acting upon cells undergoing acoustophoresis may impact cell viability, proliferation or cell function via subtle phenotypic changes. If this were the case, it would suggest that the acoustophoresis method would be a less useful tool for many cell analysis applications as well as for cell therapy. We investigate, for the first time, several key aspects of cellular changes following acoustophoretic processing. We used two settings of ultrasonic actuation, one that is used for cell sorting (10 Vpp operating voltage) and one that is close to the maximum of what the system can generate (20 Vpp). We used microglial cells and assessed cell viability and proliferation, as well as the inflammatory response that is indicative of more subtle changes in cellular phenotype. Furthermore, we adapted a similar methodology to monitor the response of human prostate cancer cells to acoustophoretic processing. Lastly, we analyzed the respiratory properties of human leukocytes and thrombocytes to explore if acoustophoretic processing has adverse effects. BV2 microglia were unaltered after acoustophoretic processing as measured by apoptosis and cell turnover assays as well as inflammatory cytokine response up to 48 h following acoustophoresis. Similarly, we found that acoustophoretic processing neither affected the cell viability of prostate cancer cells nor altered their prostate-specific antigen secretion following androgen receptor activation. Finally, human thrombocytes and leukocytes displayed unaltered mitochondrial respiratory function and integrity after acoustophoretic processing. We conclude that microchannel acoustophoresis can be used for effective continuous flow-based cell separation without affecting cell viability, proliferation, mitochondrial respiration or inflammatory status.
    PLoS ONE 05/2013; 8(5):e64233. DOI:10.1371/journal.pone.0064233 · 3.23 Impact Factor
  • Source
    • "An equally appealing function of microglia is their phagocytic activity which may rescue neurons from degeneration. Enhancing the phagocytic state of microglia at early stage post-TBI may retard cell death signals to spread to damaged neurons and neighboring cells (Jeon et al., 2012; Schafer et al., 2012; Tamashiro et al., 2012). Furthermore, there are many studies that have documented the process of cell autophagy as neuroprotective after TBI (Clark et al., 2008; Lai et al., 2008; Liu et al., 2008; Venkatesan et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Traumatic brain injury (TBI) has become the signature wound of wars in Afghanistan and Iraq. Injury may result from a mechanical force, a rapid acceleration-deceleration movement, or a blast wave. A cascade of secondary cell death events ensues after the initial injury. In particular, multiple inflammatory responses accompany TBI. A series of inflammatory cytokines and chemokines spreads to normal brain areas juxtaposed to the core impacted tissue. Among the repertoire of immune cells involved, microglia is a key player in propagating inflammation to tissues neighboring the core site of injury. Neuroprotective drug trials in TBI have failed, likely due to their sole focus on abrogating neuronal cell death and ignoring the microglia response despite these inflammatory cells' detrimental effects on the brain. Another relevant point to consider is the veracity of results of animal experiments due to deficiencies in experimental design, such as incomplete or inadequate method description, data misinterpretation, and reporting may introduce bias and give false-positive results. Thus, scientific publications should follow strict guidelines that include randomization, blinding, sample-size estimation, and accurate handling of all data (Landis et al., 2012). A prolonged state of inflammation after brain injury may linger for years and predispose patients to develop other neurological disorders, such as Alzheimer's disease. TBI patients display progressive and long-lasting impairments in their physical, cognitive, behavioral, and social performance. Here, we discuss inflammatory mechanisms that accompany TBI in an effort to increase our understanding of the dynamic pathological condition as the disease evolves over time and begin to translate these findings for defining new and existing inflammation-based biomarkers and treatments for TBI.
    Frontiers in Neurology 03/2013; 4:30. DOI:10.3389/fneur.2013.00030
Show more

Preview (2 Sources)

23 Reads
Available from