Article

Noncovalent bicomponent self-assemblies on a silicon surface.

Institut FEMTO-ST, Université de Franche-Comté, CNRS, ENSMM, 32, Avenue de l'Observatoire, F-25044 Besançon Cedex, France.
ACS Nano (Impact Factor: 12.03). 06/2012; 6(8):6905-11. DOI: 10.1021/nn301827e
Source: PubMed

ABSTRACT Two-dimensional supramolecular multicomponent networks on surfaces are of major interest for the building of highly ordered functional materials with nanometer-sized features especially designed for applications in nanoelectronics, energy storage, sensors, etc. If such molecular edifices have been previously built on noble metals or HOPG surfaces, we have successfully realized a 2D open supramolecular framework on a silicon adatom-based surface under ultrahigh vacuum with thermal stability up to 400 K by combining molecule-molecule and molecule-silicon substrate interactions. One of these robust open networks was further used to control both the growth and the periodicity of the first bicomponent arrays without forming any covalent bond with a silicon surface. Our strategy allows the formation of a well-controlled long-range periodic array of single fullerenes by site-specificity inclusion into a bicomponent supramolecular network.

0 Bookmarks
 · 
178 Views

Full-text

Download
108 Downloads
Available from
May 23, 2014