Article

Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

University of Rome La Sapienza, Italy
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(6):e38910. DOI: 10.1371/journal.pone.0038910
Source: PubMed

ABSTRACT The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/-) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR(+/-) mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR(+/-) mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR(+/-) mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth.

0 Followers
 · 
122 Views
  • Source
    • "Genes involved in protein degradation that are transcriptionally regulated by FoXO [38] [39] [128] include effectors of UPS-and ALPmediated proteolysis, i.e. atrogin-1 and MuRF1 [31,32,113], and BNIP3 [37,39,40], respectively, which are known to increase under muscle atrophying conditions [122]. As expected [122] [127] both atrogin-1 and MuRF-1 mRNA expressions decreased during RL. Conversely, BNIP3 expression transiently increased, in line with literature [127], and subsequently decreased throughout further RL. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle wasting impairs physical performance, increases mortality and reduces medical intervention efficacy in chronic diseases and cancer. Developing proficient intervention strategies requires improved understanding of the molecular mechanisms governing muscle mass wasting and recovery. Involvement of muscle protein- and myonuclear turnover during recovery from muscle atrophy has received limited attention. The insulin-like growth factor (IGF)-I signaling pathway has been implicated in muscle mass regulation. As glycogen synthase kinase 3 (GSK-3) is inhibited by IGF-I signaling, we hypothesized that muscle-specific GSK-3β deletion facilitates the recovery of disuse-atrophied skeletal muscle. Wild-type mice and mice lacking muscle GSK-3β (MGSK-3β KO) were subjected to a hindlimb suspension model of reversible disuse-induced muscle atrophy and followed during recovery. Indices of muscle mass, protein synthesis and proteolysis, and post-natal myogenesis which contribute to myonuclear accretion, were monitored during the reloading of atrophied muscle. Early muscle mass recovery occurred more rapidly in MGSK-3β KO muscle. Reloading-associated changes in muscle protein turnover were not affected by GSK-3β ablation. However, coherent effects were observed in the extent and kinetics of satellite cell activation, proliferation and myogenic differentiation observed during reloading, suggestive of increased myonuclear accretion in regenerating skeletal muscle lacking GSK-3β. This study demonstrates that muscle mass recovery and post-natal myogenesis from disuse-atrophy are accelerated in the absence of GSK-3β. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 12/2014; 1852(3). DOI:10.1016/j.bbadis.2014.12.006 · 5.09 Impact Factor
  • Source
    • "Similarly, we have shown that 14 days of glucocorticoid treatment did not result in an increase in activity for any of the three catalytic subunits of the proteasome despite significant upregulation of MuRF1 and MAFbx expression (Baehr et al., 2011). Conversely, when mice were allowed to recover following 7 days of hindlimb unloading, MuRF1 and MAFbx expression was not increased at any of the time points analyzed, but 20S β5 proteasome activity was significantly increased on the first day of recovery (Lang et al., 2012). Lastly, under denervation conditions, the lack of MuRF1 resulted in greater activation of the proteasome, not less (Gomes et al., 2012). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The regulation of skeletal muscle mass depends on the balance between protein synthesis and degradation. The role of protein degradation and in particular, the ubiquitin proteasome system, and increased expression of the E3 ubiquitin ligases, MuRF1 and MAFbx/atrogin-1, in the regulation of muscle size in response to growth stimuli is unclear. Thus, the aim of this study was to measure both proteasome activity and protein synthesis in mice over a 14-day period of chronic loading using the functional overload (FO) model. Further, the importance of MuRF1 and MAFbx expression in regulating muscle hypertrophy was examined by measuring muscle growth in response to FO in mice with a null deletion (KO) of either MuRF1 or MAFbx. In wild type (WT) mice, the increase in muscle mass correlated with significant increases (2-fold) in protein synthesis at 7 and 14 days. Interestingly, proteasome activity significantly increased in WT mice after one day, and continued to increase, peaking at 7 days following FO. The increase in proteasome activity was correlated with increases in the expression of the Forkhead transcription factors, FOXO1 and FOXO3a, which increased after both MuRF1 and MAFbx increased and returned to baseline. As in WT mice, hypertrophy in the MuRF1 and MAFbx KO mice was associated with significant increases in proteasome activity after 14 days of FO. The increase in plantaris mass was similar between the WT and MuRF1 KO mice following FO, however, muscle growth was significantly reduced in female MAFbx KO mice. Collectively, these results indicate that muscle hypertrophy is associated with increases in both protein synthesis and degradation. Further, MuRF1 or MAFbx expression is not required to increase proteasome activity following increased loading, however, MAFbx expression may be required for proper growth/remodeling of muscle in response to increase loading.
    Frontiers in Physiology 02/2014; 5:69. DOI:10.3389/fphys.2014.00069 · 3.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sustained muscle wasting due to immobilization leads to weakening and severe metabolic consequences. The mechanisms responsible for muscle recovery after immobilization are poorly defined. Muscle atrophy induced by immobilization worsened in the lengthened tibialis anterior (TA) muscle, but not in the shortened gastrocnemius muscle. Here we investigated some mechanisms responsible for this differential response. Adult rats were subjected to unilateral hindlimb casting for 8 days (I8). Casts were removed at I8 and animals were allowed to recover for 10 days (R1 to R10). The worsening of TA atrophy following immobilization occurred immediately after cast removal at R1 and was sustained until R10. This atrophy correlated with a decrease in type IIb myosin heavy chain isoform and an increase in type IIx, IIa and I isoforms, with muscle connective tissue thickening, and with increased collagen (Col) I mRNA levels. Increased Col-XII, -IV, and -XVIII mRNA levels during TA immobilization normalized at R6. Sustained enhanced peptidase activities of the proteasome and apoptosome activity contributed to the catabolic response during the studied recovery period. Finally, increased nuclear apoptosis only prevailed in the connective tissue compartment of the TA. Altogether, the worsening of the TA atrophy pending immediate reloading reflects a major remodeling of its fiber type properties and alterations in the structure/composition of the extracellular compartment that may influence its elasticity/stiffness. The data suggest that sustained enhanced ubiquitin-proteasome-dependent proteolysis and apoptosis are important for these adaptations and provide some rationale for explaining the atrophy of reloaded muscles pending immobilization in a lengthened position.
    AJP Endocrinology and Metabolism 10/2012; 303(11). DOI:10.1152/ajpendo.00379.2012 · 4.09 Impact Factor
Show more