Tracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry.

Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University, New Haven, Connecticut 06536, USA.
RNA (Impact Factor: 4.62). 06/2012; 18(8):1573-9. DOI: 10.1261/rna.033126.112
Source: PubMed

ABSTRACT We report a high-throughput application of multispectral imaging flow cytometry (MIFC) for analyzing the expression and localization of both RNA and protein molecules in a heterogeneous population of cells. The approach was developed using polyadenylated nuclear (PAN) RNA, an abundant, noncoding RNA expressed by Kaposi's sarcoma-associated herpesvirus (KSHV) during the lytic phase of infection. High levels of PAN RNA are, in part, dependent on its interaction with poly(A)-binding protein C1 (PABPC1), which relocalizes from the cytoplasm to the nucleus of lytically infected cells. We quantitatively tracked the cytoplasmic to nuclear translocation of PABPC1 and examined how this translocation relates to the expression and localization of viral RNA and protein molecules in KSHV-infected cells. This high-throughput approach will be useful for other systems in which changes in subcellular localization of RNA and protein molecules need to be monitored simultaneously.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kaposi's sarcoma-associated herpesvirus (KSHV) primarily persists as a latent episome in infected cells. During latent infection, only a limited number of viral genes are expressed that help to maintain the viral episome and prevent lytic reactivation. The latent KSHV genome persists as a highly ordered chromatin structure with bivalent chromatin marks at the promoter-regulatory region of the major immediate-early gene promoter. Various stimuli can induce chromatin modifications to an active euchromatic epigenetic mark, leading to the expression of genes required for the transition from the latent to the lytic phase of KSHV life cycle. Enhanced replication and transcription activator (RTA) gene expression triggers a cascade of events, resulting in the modulation of various cellular pathways to support viral DNA synthesis. RTA also binds to the origin of lytic DNA replication to recruit viral, as well as cellular, proteins for the initiation of the lytic DNA replication of KSHV. In this review we will discuss some of the pivotal genetic and epigenetic factors that control KSHV reactivation from the transcriptionally restricted latent program.
    Viruses 01/2015; 7:116-153. · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The availability of reliable recombinant reporter virus systems has been a great boon to the study of Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8). Unexpectedly, we found that expression of the ostensibly constitutive green fluorescent protein (GFP) marker was progressively lost during unselected passage in primary rat mesenchymal precursor cells (MM), despite efficient maintenance of latent viral gene expression and episomal partitioning. This repression of EF1-α promoter-driven GFP expression appeared to be passage-dependent, however, since functionally immortalized MM cells derived from long serial passage retained stable expression of GFP following rKSHV.219 infection. Chromatin analysis of cultures that we had infected in parallel demonstrated an increase in repressive H3K27 tri-methylation across the viral episome with the exception of the LANA control region in MM cells infected at early rather than late passage post-isolation. The silencing of GFP expression in the MM cells was reversible in a dose-dependent fashion by the histone deacetylase inhibitor valproic acid, further implicating cellular silencing on incoming viral genomes, and underscoring potential differences in viral gene regulation between primary and functionally immortalized cells. Furthermore, using multispectral imaging flow cytometry, we also determined that the extent of GFP expression per cell among those that were positive did not correlate with the number of LANA dots per nucleus nor the extent of overall LANA expression per cell. This suggests a more complex mode of local gene regulation, rather than one that simply reflects the relative intracellular viral copy number. In sum, we have demonstrated the significant potential for false-negative data when using a constitutive marker gene as a sole means of evaluating herpesviral infection, especially in primary cells.
    PLoS ONE 11/2014; 9(11):e111502. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a droplet-based microfluidic platform to automatically track and characterize the behavior of single cells over time. This high-throughput assay allows encapsulation of single cells in micro-droplets and traps intact droplets in arrays of miniature wells on a PDMS-glass chip. Automated time-lapse fluorescence imaging and image analysis of the incubated droplets on the chip allows the determination of the viability of individual cells over time. In order to automatically track the droplets containing cells, we developed a simple method based on circular Hough transform to identify droplets in images and quantify the number of live and dead cells in each droplet. Here, we studied the viability of several hundred single isolated HEK293T cells over time and demonstrated a high survival rate of the encapsulated cells for up to 11 hours. The presented platform has a wide range of potential applications for single cell analysis, e.g. monitoring heterogeneity of drug action over time and rapidly assessing the transient behavior of single cells under various conditions and treatments in vitro.
    Lab on a Chip 01/2014; · 5.70 Impact Factor


1 Download
Available from