Unilateral Prefrontal Direct Current Stimulation Effects are Modulated by Working Memory Load and Gender

The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
Brain Stimulation (Impact Factor: 5.43). 06/2012; 6(3). DOI: 10.1016/j.brs.2012.05.014
Source: PubMed

ABSTRACT BACKGROUND: Recent studies revealed that anodal transcranial direct current stimulation (tDCS) to the left dorsolateral prefrontal cortex (DLPFC) may improve verbal working memory (WM) performance in humans. In the present study, we evaluated executive attention, which is the core of WM capacity, considered to be significantly involved in tasks that require active maintenance of memory representations in interference-rich conditions, and is highly dependent on DLPFC function. OBJECTIVES: We investigated verbal WM accuracy using a WM task that is highly sensitive to executive attention function. We were interested in how verbal WM accuracy may be affected by WM load, unilateral DLPFC stimulation, and gender, as previous studies showed gender-dependent brain activation during verbal WM tasks. METHODS: We utilized a modified verbal n-Back task hypothesized to increase demands on executive attention. We examined "online" WM performance while participants received transcranial direct current stimulation (tDCS), and implicit learning performance in a post-stimulation WM task. RESULTS: Significant lateralized "online" stimulation effects were found only in the highest WM load condition revealing that males benefit from left DLPFC stimulation, while females benefit from right DLPFC stimulation. High WM load performance in the left DLPFC stimulation was significantly related to post-stimulation recall performance. CONCLUSIONS: Our findings support the idea that lateralized stimulation effects in high verbal WM load may be gender-dependent. Further, our post-stimulation results support the idea that increased left hemisphere activity may be important for encoding verbal information into episodic memory as well as for facilitating retrieval of context-specific targets from semantic memory.


Available from: Oded Meiron, Feb 10, 2015
1 Follower
  • Source
    Working Memory: Developmental Differences, Component Processes and Improvement Mechanisms., 01/2013: chapter 11: pages 157-174;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The prefrontal cortex is involved in a multitude of cognitive, emotional, motivational, and social processes, so exploring its specific functions is crucial for understanding human experience and behavior. Functional imaging approaches have largely contributed to the enhancement of our understanding, but might have limitations in establishing causal relationships between physiology and the related psychological and behavioral processes. Non-invasive electrical stimulation with direct or alternating currents can help to enhance our understanding with regard to specific processes, and might provide future protocols able to improve them in case of malfunctions. We review the current state of the field, and provide an outlook for future developments.
    Neuroscience Bulletin 02/2015; 31(2). DOI:10.1007/s12264-014-1501-9 · 1.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transcranial direct current stimulation (tDCS) modulates excitability of motor cortex. However, there is conflicting evidence about the efficacy of this non-invasive brain stimulation modality to modulate performance on cognitive tasks. Previous work has tested the effect of tDCS on specific facets of cognition and executive processing. However, no randomized, double-blind, sham-controlled study has looked at the effects of tDCS on a comprehensive battery of cognitive processes. The objective of this study was to test if tDCS had an effect on performance on a comprehensive assay of cognitive processes, a standardized intelligence quotient (IQ) test. The study consisted of two substudies and followed a double-blind, between-subjects, sham-controlled design. In total, 41 healthy adult participants completed the Wechsler Adult Intelligence Scale, Fourth Edition (WAIS-IV) as a baseline measure. At least one week later, participants in substudy 1 received either bilateral tDCS (anodes over both F4 and F3, cathode over Cz, 2mA at each anode for 20minutes) or active sham tDCS (2mA for 40seconds), and participants in substudy 2 received either right or left tDCS (anode over either F4 or F3, cathode over Cz, 2mA for 20minutes). In both studies, the WAIS-IV was immediately administered following stimulation to assess for performance differences induced by bilateral and unilateral tDCS. Compared to sham stimulation, right, left, and bilateral tDCS reduced improvement between sessions on Full Scale IQ and the Perceptual Reasoning Index. This demonstration that frontal tDCS selectively degraded improvement on specific metrics of the WAIS-IV raises important questions about the often proposed role of tDCS in cognitive enhancement. Copyright © 2015 Elsevier B.V. All rights reserved.
    Behavioural brain research 04/2015; 290. DOI:10.1016/j.bbr.2015.04.031 · 3.39 Impact Factor