Article

Molecular characteristics and chromatin texture features in acute promyelocytic leukemia

Hematology/Hemotherapy Center, State University of Campinas, Rua Carlos Chagas 480, 13083-878, Campinas, SP, Brazil. .
Diagnostic Pathology (Impact Factor: 2.41). 06/2012; 7:75. DOI: 10.1186/1746-1596-7-75
Source: PubMed

ABSTRACT Acute promyelocytic leukemia is a cytogenetically well defined entity. Nevertheless, some features observed at diagnosis are related to a worse outcome of the patients.
In a prospective study, we analyzed peripheral (PB) leukocyte count, immunophenotype, methylation status of CDKN2B, CDKN2A and TP73; FLT3 and NPM1 mutations besides nuclear chromatin texture characteristics of the leukemic cells. We also examined the relation of these features with patient's outcome.
Among 19 cases, 4 had a microgranular morphology, 7 presented PB leukocytes >10x109/l, 2 had FLT3-ITD and 3 had FLT3-TKD (all three presenting a methylated CDKN2B). NPM1 mutation was not observed. PB leukocyte count showed an inverse relation with standard deviation of gray levels, contrast, cluster prominence, and chromatin fractal dimension (FD). Cases with FLT3-ITD presented a microgranular morphology, PB leukocytosis and expression of HLA-DR, CD34 and CD11b. Concerning nuclear chromatin texture variables, these cases had a lower entropy, contrast, cluster prominence and FD, but higher local homogeneity, and R245, in keeping with more homogeneously distributed chromatin. In the univariate Cox analysis, a higher leukocyte count, FLT3-ITD mutation, microgranular morphology, methylation of CDKN2B, besides a higher local homogeneity of nuclear chromatin, a lower chromatin entropy and FD were associated to a worse outcome. All these features lost significance when the cases were stratified for FLT3-ITD mutation. Methylation status of CDNK2A and TP73 showed no relation to patient's survival.
in APL, patients with FLT3-ITD mutation show different clinical characteristics and have blasts with a more homogeneous chromatin texture. Texture analysis demonstrated that FLTD-ITD was accompanied not only by different cytoplasmic features, but also by a change in chromatin structure in routine cytologic preparations. Yet we were not able to detect chromatin changes by nuclear texture analysis of patients with the FTLD-TKD or methylation of specific genes.

0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, texture feature analysis (TFA) algorithm to automatic recognition of liver disease suggests by utilizing computed tomography (CT), by applying the algorithm computer-aided diagnosis (CAD) of hepatocellular carcinoma (HCC) design. Proposed the performance of each algorithm was to comparison and evaluation. In the HCC image, set up region of analysis (ROA, window size was pixels) and by calculating the figures for TFA algorithm of the six parameters (average gray level, average contrast, measure of smoothness, skewness, measure of uniformity, entropy) HCC recognition rate were calculated. As a result, TFA was found to be significant as a measure of HCC recognition rate. Measure of uniformity was the most recognition. Average contrast, measure of smoothness, and skewness were relatively high, and average gray level, entropy showed a relatively low recognition rate of the parameters. In this regard, showed high recognition algorithms (a maximum of 97.14%, a minimum of 82.86%) use the determining HCC imaging lesions and assist early diagnosis of clinic. If this use to therapy, the diagnostic efficiency of clinical early diagnosis better than before. Later, after add the effective and quantitative analysis, criteria research for generalized of disease recognition is needed to be considered.
    02/2013; 7(1). DOI:10.7742/jksr.2013.7.1.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aberrant expression of miRNA (miR)-96 is associated with tumorigenesis and tumor progression in several solid cancers. However, little is known about the expression and prognostic value of miR-96 in acute myeloid leukemia (AML). Therefore, the aim of this study was to investigate the correlation of miR-96 expression with clinicopathological features and prognosis of AML. Real-time quantitative RT-PCR assay was performed to evaluate the expression levels of miR-96 in mononuclear cells from bone marrow or peripheral blood specimens in 86 patients with newly diagnosed AML. Compared with normal controls, miR-96 expression was significantly downregulated in patients with newly diagnosed AML (P < 0.001). In analysis of 14 diagnosis/CR-paired samples, the expression level of miR-96 was found markedly elevated in patients after treatment than before (P < 0.001). Moreover, lower levels of miR-96 were associated with a higher white blood cell count, bone marrow blast count (P < 0.001 and 0.022, respectively), and lower hemoglobin and platelet count (P = 0.036 and 0.033, respectively). Although the low-expression group seemed to have a lower CR rate (53.85% vs 70.0%), there was no significant difference between the two groups (P = 0.213). The low-expression group had a lower relapse-free survival (RFS) (P = 0.038) and overall survival (OS) (P = 0.022) compared with the high-expression group during a median follow-up of 20 months. Our data demonstrated that the expression of miR-96 was downregulated in newly diagnosed AML patients and associated with leukemic burden, as well as RFS and OS. This suggests that miR-96 detection might become a potential biomarker of prognosis and monitoring in AML.Virtual slides: The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1434808553949498.
    Diagnostic Pathology 03/2014; 9(1):76. DOI:10.1186/1746-1596-9-76 · 2.41 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies.
    03/2014; 6(1):545-79. DOI:10.3390/cancers6010545

Full-text (3 Sources)

Download
38 Downloads
Available from
May 20, 2014