Article

Functional brain activity and presynaptic dopamine uptake in patients with Parkinson's disease and mild cognitive impairment: a cross-sectional study.

Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
The Lancet Neurology (Impact Factor: 21.82). 06/2012; 11(8):679-87. DOI: 10.1016/S1474-4422(12)70138-2
Source: PubMed

ABSTRACT Many patients with Parkinson's disease have mild cognitive impairment (MCI). Deficits in executive functions and working memory suggest dysfunctional frontostriatal brain circuitry. We aimed to assess brain responses during a working memory task in a cohort of newly diagnosed drug-naive patients with Parkinson's disease with and without MCI.
Participants were recruited within a prospective cohort study of incident patients with idiopathic parkinsonism, including Parkinson's disease. Between Jan 1, 2004, and April 30, 2009, all physicians in the Umeå catchment area were requested to refer all individuals with suspected parkinsonism to the Department of Neurology at Umeå University. Included patients fulfilled the UK Parkinson's Disease Society Brain Bank clinical diagnostic criteria for Parkinson's disease. Control individuals were matched on the basis of age and sex with the first 50 patients included in the study. Participants who scored 1·5 SDs or more below the population mean on at least two cognitive measures were diagnosed with MCI. The primary outcome measures were functional MRI blood-oxygen-level-dependent signal and SPECT presynaptic uptake. Functional MRI was done during a verbal two-back working memory task. Presynaptic dopamine SPECT was done to assess presynaptic striatal dopaminergic system integrity. Event-related transient analyses of functional MRI data were done for the whole brain and for frontostriatal regions of interest, and semi-quantitative SPECT analyses were done for striatal regions of interest.
Compared with controls (n=24), patients with Parkinson's disease (n=77) had under-recruitment in an extensive brain network including bilateral striatal and frontal regions (p<0·001). Within the Parkinson's disease group, patients with Parkinson's disease and MCI (n=30) had additional under-recruitment in the right dorsal caudate nucleus (p=0·005) and the bilateral anterior cingulate cortex (p<0·001) compared with patients with Parkinson's disease without MCI (n=26). In patients with Parkinson's disease and MCI, SPECT uptake in the right caudate was lower than in patients with Parkinson's disease without MCI (p=0·008) and correlated with striatal functional MRI blood-oxygen-level-dependent signal (r=0·32, p=0·031).
These altered brain responses in patients with Parkinson's disease and MCI suggest that cognitive impairment is linked to frontostriatal dysfunction.
Swedish Medical Research Council, Swedish Parkinson Foundation, Swedish Parkinson's Disease Association, Umeå University, Kempe Foundation, Foundation for Clinical Neuroscience at Umeå University Hospital, Västerbotten County Council (ALF), King Gustaf V's and Queen Victoria's Freemason Foundation, Knut and Alice Wallenberg Foundation, and Swedish Brain Power.

2 Bookmarks
 · 
149 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease is associated with multiple cognitive impairments and increased risk of dementia, but the extent of these deficits varies widely among patients. The ICICLE-PD study was established to define the characteristics and prevalence of cognitive change soon after diagnosis, in a representative cohort of patients, using a multimodal approach. Specifically, we tested the 'Dual Syndrome' hypothesis for cognitive impairment in Parkinson's disease, which distinguishes an executive syndrome (affecting the frontostriatal regions due to dopaminergic deficits) from a posterior cortical syndrome (affecting visuospatial, mnemonic and semantic functions related to Lewy body pathology and secondary cholinergic loss). An incident Parkinson's disease cohort (n = 168, median 8 months from diagnosis to participation) and matched control group (n = 85) were recruited to a neuroimaging study at two sites in the UK. All participants underwent clinical, neuropsychological and functional magnetic resonance imaging assessments. The three neuroimaging tasks (Tower of London, Spatial Rotations and Memory Encoding Tasks) were designed to probe executive, visuospatial and memory encoding domains, respectively. Patients were also genotyped for three polymorphisms associated with cognitive change in Parkinson's disease and related disorders: (i) rs4680 for COMT Val158Met polymorphism; (ii) rs9468 for MAPT H1 versus H2 haplotype; and (iii) rs429358 for APOE-epsilon2, 3, 4. We identified performance deficits in all three cognitive domains, which were associated with regionally specific changes in cortical activation. Task-specific regional activations in Parkinson's disease were linked with genetic variation: the rs4680 polymorphism modulated the effect of levodopa therapy on planning-related activations in the frontoparietal network; the MAPT haplotype modulated parietal activations associated with spatial rotations; and APOE allelic variation influenced the magnitude of activation associated with memory encoding. This study demonstrates that neurocognitive deficits are common even in recently diagnosed patients with Parkinson's disease, and that the associated regional brain activations are influenced by genotype. These data further support the dual syndrome hypothesis of cognitive change in Parkinson's disease. Longitudinal data will confirm the extent to which these early neurocognitive changes, and their genetic factors, influence the long-term risk of dementia in Parkinson's disease. The combination of genetics and functional neuroimaging provides a potentially useful method for stratification and identification of candidate markers, in future clinical trials against cognitive decline in Parkinson's disease.
    Brain 09/2014; 137. DOI:10.1093/brain/awu201 · 10.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive impairment in Parkinson's disease (PD) is common and does directly impact patients' everyday functioning. However, the underlying mechanisms of early cognitive decline are not known. This study explored the association between striatal dopaminergic deficits and cognitive impairment within a large cohort of early, drug-naïve PD patients and tested the hypothesis that executive dysfunction in PD is associated with striatal dopaminergic depletion. A cross-sectional multicenter cohort of 339 PD patients and 158 healthy controls from the Parkinson's Progression Markers Initiative study was analyzed. Each individual underwent cerebral single-photon emission CT (SPECT) and a standardized neuropsychological assessment with tests of memory as well as visuospatial and executive function. SPECT imaging was performed with [123I]FP-CIT, and specific binding ratios in left and right putamen and caudate nucleus were calculated. The association between specific binding ratios, cognitive domain scores, and age was analyzed using Pearson's correlations, partial correlation, and conditional process analysis. A small, but significant, positive association between total striatal dopamine transporter binding and the attention/executive domain was found (r = 0.141; P = 0.009) in PD, but this was not significant after adjusting for age. However, in a moderated mediation model, we found that cognitive executive differences between controls and patients with PD were mediated by an age-moderated striatal dopaminergic deficit. Our findings support the hypothesis that nigrostriatal dopaminergic deficit is associated with executive impairment, but not to memory or visuospatial impairment, in early PD. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 10/2014; DOI:10.1002/mds.26051 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive impairment is common in PD, even in early stages. The construct of mild cognitive impairment has been used to identify clinically evident cognitive impairment without functional decline in PD patients (PD-MCI). The aim of the present study was to investigate brain connectivity associated with PD-MCI through RS-fMRI. RS-fMRI at 3T was collected in 42 PD patients and 20 matched healthy controls. Among PD patients, 21 were classified as having MCI (PD-MCI) and 21 as cognitively unimpaired (PD-nMCI) based on criteria for possible PD-MCI (level I category). Single-subject and group-level ICA was used to investigate the integrity of brain networks related to cognition in PD patients with and without MCI. Image data processing and statistical analysis were performed in BrainVoyager QX. In addition, we used VBM to test whether functional connectivity differences were related to structural abnormalities. PD-nMCI and PD-MCI patients compared with controls showed decreased DMN connectivity. PD-MCI patients, but not PD-nMCI, compared with controls, showed decreased functional connectivity of bilateral prefrontal cortex within the frontoparietal network. The decreased prefrontal cortex connectivity correlated with cognitive parameters but not with clinical variables. VBM analysis did not reveal any difference in local gray matter between patients and controls. Our findings suggest that an altered DMN connectivity characterizes PD patients, regardless of cognitive status, whereas a functional disconnection of the frontoparietal network could be associated with MCI in PD in the absence of detectable structural changes.
    Journal of Neurology 11/2014; 262(2). DOI:10.1007/s00415-014-7591-5 · 3.84 Impact Factor