Article

Functional brain activity and presynaptic dopamine uptake in patients with Parkinson's disease and mild cognitive impairment: a cross-sectional study.

Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
The Lancet Neurology (Impact Factor: 21.82). 06/2012; 11(8):679-87. DOI: 10.1016/S1474-4422(12)70138-2
Source: PubMed

ABSTRACT Many patients with Parkinson's disease have mild cognitive impairment (MCI). Deficits in executive functions and working memory suggest dysfunctional frontostriatal brain circuitry. We aimed to assess brain responses during a working memory task in a cohort of newly diagnosed drug-naive patients with Parkinson's disease with and without MCI.
Participants were recruited within a prospective cohort study of incident patients with idiopathic parkinsonism, including Parkinson's disease. Between Jan 1, 2004, and April 30, 2009, all physicians in the Umeå catchment area were requested to refer all individuals with suspected parkinsonism to the Department of Neurology at Umeå University. Included patients fulfilled the UK Parkinson's Disease Society Brain Bank clinical diagnostic criteria for Parkinson's disease. Control individuals were matched on the basis of age and sex with the first 50 patients included in the study. Participants who scored 1·5 SDs or more below the population mean on at least two cognitive measures were diagnosed with MCI. The primary outcome measures were functional MRI blood-oxygen-level-dependent signal and SPECT presynaptic uptake. Functional MRI was done during a verbal two-back working memory task. Presynaptic dopamine SPECT was done to assess presynaptic striatal dopaminergic system integrity. Event-related transient analyses of functional MRI data were done for the whole brain and for frontostriatal regions of interest, and semi-quantitative SPECT analyses were done for striatal regions of interest.
Compared with controls (n=24), patients with Parkinson's disease (n=77) had under-recruitment in an extensive brain network including bilateral striatal and frontal regions (p<0·001). Within the Parkinson's disease group, patients with Parkinson's disease and MCI (n=30) had additional under-recruitment in the right dorsal caudate nucleus (p=0·005) and the bilateral anterior cingulate cortex (p<0·001) compared with patients with Parkinson's disease without MCI (n=26). In patients with Parkinson's disease and MCI, SPECT uptake in the right caudate was lower than in patients with Parkinson's disease without MCI (p=0·008) and correlated with striatal functional MRI blood-oxygen-level-dependent signal (r=0·32, p=0·031).
These altered brain responses in patients with Parkinson's disease and MCI suggest that cognitive impairment is linked to frontostriatal dysfunction.
Swedish Medical Research Council, Swedish Parkinson Foundation, Swedish Parkinson's Disease Association, Umeå University, Kempe Foundation, Foundation for Clinical Neuroscience at Umeå University Hospital, Västerbotten County Council (ALF), King Gustaf V's and Queen Victoria's Freemason Foundation, Knut and Alice Wallenberg Foundation, and Swedish Brain Power.

2 Followers
 · 
159 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The pathological hallmark of Parkinson's disease (PD) is the degeneration of midbrain dopamine neurons. Cognitive dysfunction is a feature of PD patients even at the early stages of the disease. Electrophysiological studies on dopamine neurons in awake animals provide contradictory accounts of the role of dopamine. These studies have established that dopamine neurons convey a unique signal associated with rewards rather than cognitive functions. Emphasizing their role in reward processing leads to difficulty in developing hypothesis as to how cognitive impairments in PD are associated with the degeneration of dopamine circuitry. A hint to resolve this contradiction came from recent electrophysiological studies reporting that dopamine neurons transmit more diverse signals than previously thought. These studies suggest that dopamine neurons are divided into at least two functional subgroups, one signaling "motivational value" and the other signaling "salience." The former subgroup fits well with the conventional reward theory, whereas the latter subgroup has been shown to transmit signals related to salient but non-rewarding experiences such as aversive stimulations and cognitively demanding situations. This article reviews recent advances in understanding the non-reward functions of dopamine, and then discusses the possibility that cognitive dysfunction in PD is at least partially caused by the degeneration of the dopamine neuron subgroup signaling the salience of events in the environment. 2015 International Parkinson and Movement Disorder Society. © 2015 International Parkinson and Movement Disorder Society.
    Movement Disorders 03/2015; 30(4). DOI:10.1002/mds.26177 · 5.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease (PD) is a neurological disorder, associated with rigidity, bradykinesia, and resting tremor, among other motor symptoms. In addition, patients with PD also show cognitive and psychiatric dysfunction, including dementia, mild cognitive impairment (MCI), depression, hallucinations, among others. Interestingly, the occurrence of these symptoms-motor, cognitive, and psychiatric-vary among individuals, such that a subgroup of PD patients might show some of the symptoms, but another subgroup does not. This has prompted neurologists and scientists to subtype PD patients depending on the severity of symptoms they show. Neural studies have also mapped different motor, cognitive, and psychiatric symptoms in PD to different brain networks. In this review, we discuss the neural and behavioral substrates of most common subtypes of PD patients, that are related to the occurrence of: (a) resting tremor (vs. nontremor-dominant); (b) MCI; (c) dementia; (d) impulse control disorders (ICD); (e) depression; and/or (f) hallucinations. We end by discussing the relationship among subtypes of PD subgroups, and the relationship among motor, cognitive, psychiatric factors in PD.
    Frontiers in Systems Neuroscience 12/2013; 7:117. DOI:10.3389/fnsys.2013.00117
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive impairment in Parkinson's disease (PD) is common and does directly impact patients' everyday functioning. However, the underlying mechanisms of early cognitive decline are not known. This study explored the association between striatal dopaminergic deficits and cognitive impairment within a large cohort of early, drug-naïve PD patients and tested the hypothesis that executive dysfunction in PD is associated with striatal dopaminergic depletion. A cross-sectional multicenter cohort of 339 PD patients and 158 healthy controls from the Parkinson's Progression Markers Initiative study was analyzed. Each individual underwent cerebral single-photon emission CT (SPECT) and a standardized neuropsychological assessment with tests of memory as well as visuospatial and executive function. SPECT imaging was performed with [123I]FP-CIT, and specific binding ratios in left and right putamen and caudate nucleus were calculated. The association between specific binding ratios, cognitive domain scores, and age was analyzed using Pearson's correlations, partial correlation, and conditional process analysis. A small, but significant, positive association between total striatal dopamine transporter binding and the attention/executive domain was found (r = 0.141; P = 0.009) in PD, but this was not significant after adjusting for age. However, in a moderated mediation model, we found that cognitive executive differences between controls and patients with PD were mediated by an age-moderated striatal dopaminergic deficit. Our findings support the hypothesis that nigrostriatal dopaminergic deficit is associated with executive impairment, but not to memory or visuospatial impairment, in early PD. © 2014 International Parkinson and Movement Disorder Society
    Movement Disorders 10/2014; DOI:10.1002/mds.26051 · 5.63 Impact Factor