Immunocal® and Preservation of Glutathione as a Novel Neuroprotective Strategy for Degenerative Disorders of the Nervous System

University of Denver, Department of Biological Sciences, 2199 S. University Blvd., Denver, CO, 80208. .
Recent patents on CNS drug discovery 06/2012; 7(3):230-5. DOI: 10.2174/157488912803252014
Source: PubMed


Oxidative stress and glutathione (GSH) depletion are both recognized as significant contributors to the pathogenesis of many devastating neurodegenerative diseases. In particular, mitochondrial dysfunction leads to the aberrant production and accumulation of reactive oxygen species (ROS), which are capable of oxidizing key cellular proteins, lipids, and DNA, ultimately triggering cell death. In addition to other roles that it plays in the cell, GSH functions as a critical scavenger of these ROS. Therefore, GSH depletion exacerbates cell damage due to free radical generation. Strategies that increase or preserve the levels of intracellular GSH have been shown to act in a neuroprotective manner, suggesting that augmentation of the available GSH pool may be a promising therapeutic target for neurodegeneration. This review discusses the capacity of a cystine-rich, whey protein supplement (Immunocal®) to enhance the de novo synthesis of GSH in neurons, and highlights its potential as a novel therapeutic approach to mitigate the oxidative damage that underlies the pathogenesis of various neurodegenerative diseases. Additionally, this review discusses various patents from 1993 to 2012 both with Immunocal® and other methods that modulate GSH in neurodegeneration.

17 Reads
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oxidative stress has been implicated in several pathologies including neurological disorders. Centella asiatica is a popular medicinal plant which has long been used to treat neurological disturbances in Ayurvedic medicine. In the present study, we quantified of compounds by high performance liquid chromatography (HPLC) and examined the phenolic content of infusion, ethyl acetate, n-butanolic and dichloromethane fractions. Furthermore, we analyzed the ability of the extracts from C. asiatica to scavenge the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) radical as well as total antioxidant activity through the reduction of molybdenum (VI) (Mo(6+)) to molybdenum (V) (Mo(5+)). Finally, we examined the antioxidant effect of extracts against oxidant agents, quinolinic acid (QA) and sodium nitroprusside (SNP), on homogenates of different brain regions (cerebral cortex, striatum and hippocampus). The HPLC analysis revealed that flavonoids, triterpene glycoside, tannins, phenolic acids were present in the extracts of C. asiatica and also the phenolic content assay demonstrated that ethyl acetate fraction is rich in these compounds. Besides, the ethyl acetate fraction presented the highest antioxidant effect by decreasing the lipid peroxidation in brain regions induced by QA. On the other hand, when the pro-oxidant agent was SNP, the potency of infusion, ethyl acetate and dichloromethane fractions was equivalent. Ethyl acetate fraction from C. asiatica also protected against thiol oxidation induced by SNP and QA. Thus, the therapeutic potential of C. asiatica in neurological diseases could be associated to its antioxidant activity.
    Neurochemical Research 04/2015; 40(6). DOI:10.1007/s11064-015-1582-5 · 2.59 Impact Factor