Dietary exposure assessment of putrescine and cadaverine and derivation of tolerable levels in selected foods consumed in Austria

European Food Research and Technology (Impact Factor: 1.39). 05/2012; 235(2). DOI: 10.1007/s00217-012-1748-1

ABSTRACT Biogenic amines (histamine, tyramine, putres-cine, cadaverine, agmatine, spermidine and spermine) are nitrogenous compounds. They occur naturally in living organisms and are involved in many biological processes. Nonetheless, high amounts in food may be hazardous to human health. The diamines putrescine and cadaverine in food can potentiate the effects of simultaneously ingested histamine. In protein-rich foods, high concentrations of these diamines are indicative for hygienic deficiencies in the food chain. Even though being formed endogenously and being essential for some physiological metabolic pathways, both diamines are known as precursors for car-cinogenic nitrosamines. Putrescine also plays a certain role in tumour growth. Nevertheless, no tolerable levels in foods have been established so far. The present study suggests tolerable levels in cheese, fermented sausages, fish, sauerkraut and seasonings that are based on toxico-logical threshold levels, occurrence of diamines in foods and food consumption in Austria. Average daily intake of putrescine via fermented food was calculated to be 6.8 (female adults) and 8.8 (male adults) mg per person. Respective numbers for cadaverine were 9.8 and 11.6 mg per person and day. For putrescine, proposed maximum tolerable levels for sauerkraut, fish, cheese, fermented sausages and seasonings are 140, 170, 180, 360 and 510 mg/kg, respectively. Likewise, for cadaverine, in sauerkraut, fish, cheese, fermented sausages and season-ings, maximum tolerable levels are 430, 510, 540, 1,080 and 1,540 mg/kg, respectively. These limits can be met by current manufacturing practices, as ascertained from the results of our own studies and from literature. Admittedly, only few data are published on toxicological threshold levels of these diamines, which mean that these tolerable levels are associated with some uncertainty.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biogenic amines (BAs) represent a considerable toxicological risk in some food products. Putrescine is one of the most common BAs in food. Its increased occurrence in food may lead to alimentary poisoning, due to enhancement of the toxic effects of other BAs, and also to lower quality of food, this amine is potentially carcinogenic. Increased occurrence of putrescine in food is mainly due to the bacterial metabolism of the Gram-negative as well as Gram-positive bacteria present. The bacterial metabolism of putrescine is very specific due to its complexity (in comparison with the metabolism of other BAs). There are 3 distinct known pathways leading toward the formation of putrescine, in some splices involving up to 6 different enzymes. The existence of more metabolic pathways and the possibility of their simultaneous use by different bacteria complicate the specification of the best conditions for food production and storage, which could lead to a lower content of putrescine. This review provides a summary of the existing knowledge about putrescine production and detection (mainly detection of specific genes for different enzymes using polymerase chain reaction) in both starter and contaminating microorganisms. Thus, this comprehensive review gives a useful overview for further research.
    Comprehensive Reviews in Food Science and Food Safety 09/2014; 13(5). DOI:10.1111/1541-4337.12099 · 3.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review continues a previous one (Kalač & Krausová, 2005). Dietary polyamines spermidine and spermine participate in an array of physiological roles with both favourable and injurious effects on human health. Dieticians thus need plausible information on their content in various foods. The data on the polyamine contents in raw food materials increased considerably during the reviewed period, while information on their changes during processing and storage have yet been fragmentary and inconsistent. Spermidine and spermine originate mainly from raw materials. Their high contents are typical particularly for inner organs and meat of warm-blooded animals, soybean and fermented soybean products and some mushroom species. Generally, polyamine contents range widely within the individual food items.
    Food Chemistry 10/2014; 161C:27-39. DOI:10.1016/j.foodchem.2014.03.102 · 3.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The effects of vacuum packaging followed by high pressure processing on the shelf-life of fillets of pike (Esox lucius) were examined. Samples were pressure-treated at 300 and 500MPa and stored at 3.5 and 12°C for up to 70days. The content of eight biogenic amines (putrescine, cadaverine, spermidine, spermine, histamine, tyramine, tryptamine and phenylethylamine) were determined. Putrescine showed very good correspondence with the level of applied pressure and organoleptic properties. Polyamines spermidine and spermine did not show statistically significant changes with the level of applied pressure and the time of storage. Increased cadaverine and tyramine contents were found in samples with good sensory signs, stored for longer time and/or kept at 12°C, thus indicating the loss of freshness. Tryptamine and phenylethylamine were not detected in pressure-treated samples kept at 3.5°C. Histamine was not detected in samples of good quality.
    Food Chemistry 05/2014; 151:466-71. DOI:10.1016/j.foodchem.2013.11.094 · 3.26 Impact Factor


Available from
Jun 1, 2014