Intracellular cyclophilin A is an important Ca(2+) regulator in platelets and critically involved in arterial thrombus formation.

Medizinische Klinik III, Department of Cardiology and Cardiovascular Diseases, Eberhard Karls University, Tübingen, Germany.
Blood (Impact Factor: 9.78). 06/2012; 120(6):1317-26. DOI: 10.1182/blood-2011-12-398438
Source: PubMed

ABSTRACT Platelet adhesion and aggregation play a critical role in primary hemostasis. Uncontrolled platelet activation leads to pathologic thrombus formation and organ failure. The decisive central step for different processes of platelet activation is the increase in cytosolic Ca(2+) activity ([Ca(2+)](i)). Activation-dependent depletion of intracellular Ca(2+) stores triggers Ca(2+) entry from the extracellular space. Stromal interaction molecule 1 (STIM1) has been identified as a Ca(2+) sensor that regulates store-operated Ca(2+) entry through activation of the pore-forming subunit Orai1, the major store-operated Ca(2+) entry channel in platelets. In the present study, we show for the first time that the chaperone protein cyclophilin A (CyPA) acts as a Ca(2+) modulator in platelets. CyPA deficiency strongly blunted activation-induced Ca(2+) mobilization from intracellular stores and Ca(2+) influx from the extracellular compartment and thus impaired platelet activation substantially. Furthermore, the phosphorylation of the Ca(2+) sensor STIM1 was abrogated upon CyPA deficiency, as shown by immunoprecipitation studies. In a mouse model of arterial thrombosis, CyPA-deficient mice were protected against arterial thrombosis, whereas bleeding time was not affected. The results of the present study identified CyPA as an important Ca(2+) regulator in platelets, a critical mechanism for arterial thrombosis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: OBJECTIVE: To study the interactions of cytoplasmic calcium elevation, mitochondrial permeability transition pore (mPTP) formation, and reactive oxygen species formation in the regulation of phosphatidylserine (PS) exposure in platelets. METHODS AND RESULTS: mPTP formation, but not the degree of cytoplasmic calcium elevation, was associated with PS exposure in wild-type, cyclophilin D null, ionomycin-treated, and reactive oxygen species-treated platelets. In the absence of the mPTP regulator cyclophilin D, agonist-initiated mPTP formation and high-level PS exposure were markedly blunted, but cytoplasmic calcium transients were unchanged. Mitochondrial calcium (Ca(2+)(mit)) transients and reactive oxygen species, key regulators of mPTP formation, were examined in strongly stimulated platelets. Increased reactive oxygen species production occurred in strongly stimulated platelets and was dependent on extracellular calcium entry, but not the presence of cyclophilin D. Ca(2+)(mit) increased significantly in strongly stimulated platelets. Abrogation of Ca(2+)(mit) entry either by inhibition of the Ca(2+)(mit) uniporter or mitochondrial depolarization, prevented mPTP formation and exposure but not platelet aggregation or granule release. CONCLUSIONS: Sustained cytoplasmic calcium levels are necessary, but not sufficient, for high-level PS exposure in response to agonists. Increased Ca(2+)(mit) levels are a key signal initiating mPTP formation and PS exposure. Blockade of Ca(2+)(mit) entry allows the specific inhibition of platelet procoagulant activity.
    Arteriosclerosis Thrombosis and Vascular Biology 10/2012; · 6.34 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclophilin A (CyPA) is an important mediator in cardiovascular diseases. It possesses peptidyl-prolyl cis-trans isomerase activity (PPIase) and chaperone functions, which regulate protein folding, intracellular trafficking and reactive oxygen species (ROS) production. Platelet glycoprotein receptor αIIbβ3 integrin activation is the common pathway for platelet activation. IT was our objective to understand the mechanism by which CyPA-regulates αIIbβ3 activation in platelets. Mice deficient for CyPA (CyPA-/-) had prolonged tail bleeding time compared to wild-type (WT) controls despite equivalent platelet numbers. In vitro studies revealed that CyPA-/- platelets exhibited dramatically decreased thrombin-induced platelet aggregation. In vivo, formation of occlusive thrombi following FeCl3 injury was also significantly impaired in CyPA-/- mice compared with WT-controls. Furthermore, CyPA deficiency inhibited flow-induced thrombus formation in vitro. Flow cytometry demonstrated that thrombin-induced ROS production and αIIbβ3 activation were reduced in CyPA-/- platelets. Coimmunoprecipitation studies showed ROS-dependent increased association of CyPA and αIIbβ3. This association was dependent upon the PPIase activity of CyPA. Significantly, fibrinogen-platelet binding, platelet spreading and cytoskeleton reorganisation were also altered in CyPA-/- platelets. Moreover, CyPA deficiency prevented thrombin-induced αIIbβ3 and cytoskeleton association. In conclusion, CyPA is an important mediator in platelet function by regulation of αIIbβ3 bidirectionalsignalling through increased ROS production and facilitating interaction between αIIbβ3 and the cell cytoskeleton.
    Thrombosis and Haemostasis 01/2014; 111(5). · 5.76 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Platelet activation and thrombus formation play a critical role in primary hemostasis but also represent a pathophysiological mechanism leading to acute thrombotic vascular occlusions. Besides, platelets modulate cellular processes including inflammation, angiogenesis and neurodegeneration. On the other hand, platelet activation and thrombus formation is altered in different diseases leading to either bleeding complications or pathological thrombus formation. For many years platelets have been considered to play a role in neuroinflammatory diseases such as Alzheimer's disease (AD). AD is characterized by deposits of Amyloid ß (Aß) and strongly related to vascular diseases with platelets playing a critical role in the progression of AD because exposure of platelets to Aß induces platelet activation, platelet Aß release, and enhanced platelet adhesion to collagen in vitro and at the injured carotid artery in vivo. However, the molecular mechanisms and the relation between vascular pathology and amyloid-ß plaque formation in the pathogenesis of AD are not fully understood. Compelling evidence is suggestive for altered platelet activity in AD patients. Thus we analysed platelet activation and thrombus formation in aged AD transgenic mice (APP23) known to develop amyloid-ß deposits in brain parenchyma and cerebral vessels. As a result, platelets are in a pre-activated state in blood of APP23 mice and showed strongly enhanced integrin activation, degranulation and spreading kinetics on fibrinogen surfaces upon stimulation. This enhanced platelet signaling translated into almost unlimited thrombus formation on collagen under flow conditions in vitro and accelerated vessel occlusion in vivo suggesting that these mice are at high risk of arterial thrombosis leading to cerebrovascular and unexpectedly to cardiovascular complications that might be also relevant in AD patients.
    Cellular signalling. 06/2014;


Available from
May 22, 2014