Near-field Raman spectroscopy of biological nanomaterials by in situ laser-induced synthesis of tip-enhanced Raman spectroscopy tips.

School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
Optics Letters (Impact Factor: 3.39). 06/2012; 37(12):2256-8. DOI: 10.1364/OL.37.002256
Source: PubMed

ABSTRACT We report a new approach in tip-enhanced Raman spectroscopy (TERS) in which TERS-active tips with enhancement factors of ∼10(-5)× can be rapidly (1-3 min) produced in situ by laser-induced synthesis of silver nanoparticles at the tip apex. The technique minimizes the risks of tip contamination and damage during handling and provides in situ feedback control, which allows the prediction of the tip performance. We show that TERS tips produced by this technique enable the measurement of spatially resolved TERS spectra of self-assembled peptide nanotubes with a spatial resolution of ∼20  nm.

  • [Show abstract] [Hide abstract]
    ABSTRACT: A tip-enhanced Raman spectroscopy (TERS) based on plasmonic lens (PL) excitation is proposed in this work. A PL expected to realize a strong longitudinal electric field focus is designed. The focusing performance of the PL is calculated via finite-difference time-domain (FDTD) simulation and experimentally detected by a scattering-type scanning near-field optical microscope. The PL is introduced to a TERS system as a focusing device. Experimental results with carbon nanotube samples indicate that the Raman scatting signal is significantly enhanced. It proves experimentally that the combination of a PL focused excitation field with a metallic tip in a TERS system is a promising method.
    Optics Express 04/2013; 21(8):9414-21. · 3.55 Impact Factor