The signature of orbital motion from the dayside of the planet τ Boötis b.

Leiden Observatory, Leiden University, Postbus 9513, 2300RA Leiden, The Netherlands.
Nature (Impact Factor: 42.35). 06/2012; 486(7404):502-4. DOI: 10.1038/nature11161
Source: PubMed

ABSTRACT The giant planet orbiting τ Boötis (named τ Boötis b) was amongst the first extrasolar planets to be discovered. It is one of the brightest exoplanets and one of the nearest to us, with an orbital period of just a few days. Over the course of more than a decade, measurements of its orbital inclination have been announced and refuted, and have hitherto remained elusive. Here we report the detection of carbon monoxide absorption in the thermal dayside spectrum of τ Boötis b. At a spectral resolution of ∼100,000, we trace the change in the radial velocity of the planet over a large range in phase, determining an orbital inclination of 44.5° ± 1.5° and a mass 5.95 ± 0.28 times that of Jupiter, demonstrating that atmospheric characterization is possible for non-transiting planets. The strong absorption signal points to an atmosphere with a temperature that is decreasing towards higher altitudes, in contrast to the temperature inversion inferred for other highly irradiated planets. This supports the hypothesis that the absorbing compounds believed to cause such atmospheric inversions are destroyed in τ Boötis b by the ultraviolet emission from the active host star.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface environment of habitable exoplanets will be important for astrobiologists on exoplanets in near future. Diverse surface environments on the Earth including continents, ocean, and meteorological condition (clouds and rains) serve as the backbone of biodiversity. One of the promising approaches to know the landscape of the terrestrial exoplanets is to use scattered light of the planet through direct imaging.Since spin rotation and orbital revolution change illuminating area on planetary surface and cause time variation to disk-integrated brightness, light curves carry spatial information on the planetary surface. We propose an inversion technique of annual reflected light curves to sketch a two-dimensional albedo map of exoplanets, named the spin-orbit tomography (SOT). Applying the SOT to realistic simulations of the reflected light of an Earth-twin, we demonstrate how the SOT works. The mean cloud and continental distributions can be roughly obtained with single band photometry and difference of two-bands photometry, respectively. The SOT retrieves the planetary image without actually resolving the planet, which can be used to know the habitat of the exoplanets in near future.
    Proceedings of the International Astronomical Union 03/2014; 8(S293).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of exoplanets is arguably the most exciting and fastest-growing field in astrophysics. Given the youth of exoplanet science, the field is strongly driven by observations. Here we summarise current knowledge of the atmospheres and wider environments of the known exoplanets giving particular emphasis on the upper atmospheres and the surrounding environment, rather than on the deeper atmospheric layers.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report Hubble Space Telescope (HST) optical to near-infrared transmission spectroscopy of the hot Jupiter WASP-6b, measured with the Space Telescope Imaging Spectrograph (STIS) and Spitzer's InfraRed Array Camera (IRAC). The resulting spectrum covers the range $0.29-4.5\,\mu$m. We find evidence for modest stellar activity of WASP-6b and take it into account in the transmission spectrum. The overall main characteristic of the spectrum is an increasing radius as a function of decreasing wavelength corresponding to a change of $\Delta (R_p/R_{\ast})=0.0071$ from 0.33 to $4.5\,\mu$m. The spectrum suggests an effective extinction cross-section with a power law of index consistent with Rayleigh scattering, with temperatures of $973\pm144$ K at the planetary terminator. We compare the transmission spectrum with hot-Jupiter atmospheric models including condensate-free and aerosol-dominated models incorporating Mie theory. While none of the clear-atmosphere models is found to be in good agreement with the data, we find that the complete spectrum can be described by models that include significant opacity from aerosols including Fe-poor Mg$_2$SiO$_4$, MgSiO$_3$, KCl and Na$_2$S dust condensates. WASP-6b is the second planet after HD189733b which has equilibrium temperatures near $\sim1200$ K and shows prominent atmospheric scattering in the optical.
    Monthly Notices of the Royal Astronomical Society 11/2014; 447(1). · 5.23 Impact Factor


Available from