Article

DETERMINACIÓN DEL COLOR EN EPICARPIO DE TOMATES (Lycopersicum esculentum Mill.) CON SISTEMA DE VISIÓN COMPUTARIZADA DURANTE LA MADURACIÓN

Agronomía Costarricense 01/2012; 36(1):97-111.

ABSTRACT Se estudió la evolución del color de muestras de tomates durante la maduración a temperatura ambiente y otras en refrigeración, mediante Sistema de Visión Computarizada (SVC). El SVC lo constituye un escenario iluminado, una cámara digital CCD y un computador (Laptop) ambos calibrados. El procesamiento digital de las imágenes se llevó a cabo con el software Adobe® Photoshop® CS3 Extended, con los cuales generaron
imágenes promediadas en coordenadas L*, a* y b*. La relación a*/b* y las coordenadas polares c* y hº, que presentaron diferencias estadísticas significativas entre las muestras determinadas (p<0,05).

1 Bookmark
 · 
204 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The colorimetric coordinates analysis of digital images in samples pear guava fruits (Psidium guajava cv. Pear guava) was performed for three times of harvest: traditional harvesting at 120 days after flowering (T1), early harvesting at 112 days after flowering (T2) and, early harvesting at 110 days after flowering (T3), the three group of samples were stored at environmental conditions at a temperature of 26 ºC and 58% of relative humidity and under refrigeration at 7.5 ºC and 85% relative humidity. For color determination two color spaces were used: RGB and CIE-L*a*b*, each of these spaces describes the color of the skin using three components that allow the comparison of its evolution during each step of postharvest. The results showed a typical evolution from deep green, freshly harvested, to light green yellowish colors. The found coordinates allow the reproduction of the colors of the evolution of ripening in printing devices configured in RGB coordinates. From the physicochemical parameters assessed, the respiration rate of the fruit is the most correlated with the change of color during the post-harvest stage. Se desarrolló el análisis de las coordenadas colorimétricas de imágenes digitales en muestras de frutos de guayaba pera (Psidium guajava cv. Guayaba pera) para tres tipos de cosecha: recolección tradicional 120 días después de la floración T1, recolección temprana 112 días después de la floración T2 y recolección temprana 110 días después de la floración T3, los tres tratamientos fueron almacenados en condiciones ambientales con temperatura de 26 ºC y humedad relativa del 58% y en ambiente refrigerado con temperatura de 7,5 ºC y humedad relativa del 85%. Para la determinación del color se utilizaron dos espacios de color: RGB y CIE-L*a*b*, cada uno de estos espacios describió el color de la piel usando tres componentes que permitieron comparar la evolución de cada uno de éstos durante la etapa de poscosecha. Los resultados presentaron una evolución típica desde el verde intenso, recién recolectado, hacia colores verdes claros amarillosos. Las coordenadas encontradas permiten la reproducción de los colores de la evolución de la madurez en dispositivos de impresión configurados en coordenadas RGB. De los parámetros fisicoquímicos evaluados, la tasa de respiración de los frutos es lo que más se correlaciona con el cambio de coloración durante la etapa de poscosecha.
    http://revista.eia.edu.co/revista19.html. 10/2013; Volumen 10 / Número 19 / Enero - Junio 2013:pp. 79-89.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This work was done in order to implement and validate an economical method of measuring color in food, in reference to a Konika Minolta CR-400 colorimeter. For this, we implemented a Computer Vision System (CVS) comprising a stage with D65 light conditions, a CCD digital camera and graphic software. Color was measured by capturing images to rice samples with different particle size: milled rice (AE), broken rice (AQ) and rice flour (AH), and bread with different food matrix structure: hamburger bread with thick crumb (MG), sliced bread with fine crumb (MF), and the surface of a ready-cooked bread as a complete closed structure (C). The image processing was performed with Adobe® Photoshop® CS5 to get color values in coordinates L *, a * and b *. As a result, it wasn’t possible to validate the CVS against Konika Minolta CR-400 colorimeter, because significant difference was found between all measurements. Furthermore, particle size was analyzed in rice to find out if it affected the color of the sample. As a result, significant difference was found in the obtained values. Keywords: Computer Vision System, colorimeter, food color measurement, CIE-L*a*b*, image processing.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of mathematical models to predict the physiological status of a developing fruit can be a useful tool to reduce the variation in fruit response to postharvest treatments. The objective of this study was to develop a mathematical model to predict Days After Anthesis (DAA) in tomato fruit from changes in the blossom end color. Around 160 tomato flowers from 40 plants of a tomato cultivar ‘Rutgers’ and the nearly isogenic line tomato ripening mutant rin were tagged after artificial pollination and allowed to fruit set. The quantification of color was done from 5 to 85 DAA every 5 days in the tomato fruit blossom-end of both ‘Rutgers’ and mutant rin using a a Minolta chroma meter CR-300 set in the L*, a* and b* color space. The predictive model was developed using the stepwise procedure in forward selection with DAA as the response variable and all the possible combinations between the next group of regressor: L*, a* and b*, square L*, a* and b*, chroma and Hue angle calculated from measured a* and b* values. It was used the F statistic, mean square error, coefficient of determination, Mallows coefficient and distribution of residuals around zero as indicators of model prediction’s efficiency. Correlation coefficients between the different variables measured and the DAA were calculated. The reliability of the statistical analysis was tested by using the nearly isogenic line of ‘Rutgers’: The non-ripening mutant rin as a comparative control. It was concluded that the statistical procedure used is robust and sensitive enough to identify data not suitable for developing a good predictive model. Also, it is possible to predict the days after anthesis of a developing tomato fruit from changes in the blossom-end color with almost 80% of accuracy.
    American Journal of Agricultural and Biological Science 07/2013; 8(3):191-198.

Full-text

View
64 Downloads
Available from
May 28, 2014