Article

Novel paramyxoviruses in free-ranging European bats.

Robert Koch Institute, Centre for Biological Security, Berlin, Germany.
PLoS ONE (Impact Factor: 3.53). 01/2012; 7(6):e38688. DOI: 10.1371/journal.pone.0038688
Source: PubMed

ABSTRACT The zoonotic potential of paramyxoviruses is particularly demonstrated by their broad host range like the highly pathogenic Hendra and Nipah viruses originating from bats. But while so far all bat-borne paramyxoviruses have been identified in fruit bats across Africa, Australia, South America, and Asia, we describe the detection and characterization of the first paramyxoviruses in free-ranging European bats. Moreover, we examined the possible impact of paramyxovirus infection on individual animals by comparing histo-pathological findings and virological results. Organs from deceased insectivorous bats of various species were sampled in Germany and tested for paramyxovirus RNA in parallel to a histo-pathological examination. Nucleic acids of three novel paramyxoviruses were detected, two viruses in phylogenetic relationship to the recently proposed genus Jeilongvirus and one closely related to the genus Rubulavirus. Two infected animals revealed subclinical pathological changes within their kidneys, suggestive of a similar pathogenesis as the one described in fruit bats experimentally infected with Hendra virus.Our findings indicate the presence of bat-born paramyxoviruses in geographic areas free of fruit bat species and therefore emphasize a possible virus-host co-evolution in European bats. Since these novel viruses are related to the very distinct genera Rubulavirus and Jeilongvirus, a similarly broad genetic diversity among paramyxoviruses in other Microchiroptera compared to Megachiroptera can be assumed. Given that the infected bats were either found in close proximity to heavily populated human habitation or areas of intensive agricultural use, a potential risk of the emergence of zoonotic paramyxoviruses in Europe needs to be considered.

0 Bookmarks
 · 
176 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bat-borne viruses can pose a serious threat to human health, with examples including Nipah virus (NiV) in Bangladesh and Malaysia, and Marburg virus (MARV) in Africa. To date, significant human outbreaks of such viruses have not been reported in the European Union (EU). However, EU countries have strong historical links with many of the countries where NiV and MARV are present and a corresponding high volume of commercial trade and human travel, which poses a potential risk of introduction of these viruses into the EU. In assessing the risks of introduction of these bat-borne zoonotic viruses to the EU, it is important to consider the location and range of bat species known to be susceptible to infection, together with the virus prevalence, seasonality of viral pulses, duration of infection and titre of virus in different bat tissues. In this paper, we review the current scientific knowledge of all these factors, in relation to the introduction of NiV and MARV into the EU.
    Viruses. 01/2014; 6(5):2084-121.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: J paramyxovirus (JPV) was first isolated from moribund mice with hemorrhagic lung lesions in Australia in the 1970s. Recent sequencing of JPV (JPV-LW) confirms that JPV is a paramyxovirus with several unique features. However, neither JPV-LW nor recombinant JPV based on its sequence (rJPV-LW) caused obvious illness in mice. In this work, we analyzed a different JPV isolate (JPV-BH), which behaved differently from JPV-LW; JPV-BH grew slower in Vero cells and caused less cytopathic effect in tissue culture cells but caused severe disease in mice. We have determined the whole genome sequence of JPV-BH. There were several nucleotide sequence differences between JPV-BH and JPV-LW: one in the leader sequence, one in the GX gene, and three in the L gene. The high sequence identity between JPV-BH and JPV-LW suggests that JPV-BH and JPV-LW are the same virus strain, but obtained at different passages from different laboratory. To understand the roles of these nucleotide sequence differences in pathogenicity in mice, we generated a recombinant JPV-BH (rJPV-BH) virus and hybrid rJPV-BH viruses with sequences from the leader sequence (rJPV-BH-Le-LW), the GX gene (rJPV-BH-GX-LW), and the L gene (rJPV-BH-L-LW) of JPV-LW and compared their pathogenicity in mice. We have found that rJPV-BH-L-LW was attenuated in mice, indicating that nucleotide sequence differences in the L gene play a critical role in pathogenesis.
    Journal of Virology 09/2013; · 5.08 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.
    Viruses 08/2014; 63390:3110-3128. · 2.51 Impact Factor

Full-text (3 Sources)

View
90 Downloads
Available from
May 19, 2014