Novel Paramyxoviruses in Free-Ranging European Bats

Robert Koch Institute, Centre for Biological Security, Berlin, Germany.
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(6):e38688. DOI: 10.1371/journal.pone.0038688
Source: PubMed

ABSTRACT The zoonotic potential of paramyxoviruses is particularly demonstrated by their broad host range like the highly pathogenic Hendra and Nipah viruses originating from bats. But while so far all bat-borne paramyxoviruses have been identified in fruit bats across Africa, Australia, South America, and Asia, we describe the detection and characterization of the first paramyxoviruses in free-ranging European bats. Moreover, we examined the possible impact of paramyxovirus infection on individual animals by comparing histo-pathological findings and virological results. Organs from deceased insectivorous bats of various species were sampled in Germany and tested for paramyxovirus RNA in parallel to a histo-pathological examination. Nucleic acids of three novel paramyxoviruses were detected, two viruses in phylogenetic relationship to the recently proposed genus Jeilongvirus and one closely related to the genus Rubulavirus. Two infected animals revealed subclinical pathological changes within their kidneys, suggestive of a similar pathogenesis as the one described in fruit bats experimentally infected with Hendra virus.
Our findings indicate the presence of bat-born paramyxoviruses in geographic areas free of fruit bat species and therefore emphasize a possible virus–host co-evolution in European bats. Since these novel viruses are related to the very distinct genera Rubulavirus and Jeilongvirus, a similarly broad genetic diversity among paramyxoviruses in other Microchiroptera compared to Megachiroptera can be assumed. Given that the infected bats were either found in close proximity to heavily populated human habitation or areas of intensive agricultural use, a potential risk of the emergence of zoonotic paramyxoviruses in Europe needs to be considered.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Paramyxoviridae family includes many viruses that are pathogenic in humans, including parainfluenza viruses, measles virus, respiratory syncytial virus, and the emerging zoonotic Henipaviruses. No effective treatments are currently available for these viruses, and there is a need for efficient antiviral therapies. Paramyxoviruses enter the target cell by binding to a cell surface receptor and then fusing the viral envelope with the target cell membrane, allowing the release of the viral genome into the cytoplasm. Blockage of these crucial steps prevents infection and disease. Binding and fusion are driven by two virus-encoded glycoproteins, the receptor-binding protein and the fusion protein, that together form the viral "fusion machinery." The development of efficient antiviral drugs requires a deeper understanding of the mechanism of action of the Paramyxoviridae fusion machinery, which is still controversial. Here, we review recent structural and functional data on these proteins and the current understanding of the mechanism of the paramyxovirus cell entry process. © 2015 Elsevier Inc. All rights reserved.
    Progress in molecular biology and translational science 129C:1-32. DOI:10.1016/bs.pmbts.2014.10.001 · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bats of different species play a major role in the emergence and transmission of highly pathogenic viruses including Ebola virus, SARS-like coronavirus and the henipaviruses. These viruses require proteolytic activation of surface envelope glycoproteins needed for entry, and cellular cathepsins have been shown to be involved in proteolysis of glycoproteins from these distinct virus families. Very little is currently known about the available proteases in bats. To determine whether the utilization of cathepsins by bat-borne viruses is related to the nature of proteases in their natural hosts, we examined proteolytic processing of several viral fusion proteins in cells derived from two fruit bat species, Pteropus alecto and Rousettus aegyptiacus. Our work shows that fruit bat cells have homologs of cathepsin and furin proteases capable of cleaving and activating both the cathepsin-dependent Hendra virus F and the furin-dependent parainfluenza virus 5 F proteins. Sequence analysis comparing Pteropus alecto furin and cathepsin L to proteases from other mammalian species showed a high degree of conservation; however significant amino acid variation occurs at the C-terminus of Pteropus alecto furin. Further analysis of furin-like proteases from fruit bats revealed that these proteases are catalytically active and resemble other mammalian furins in their response to a potent furin inhibitor. However, kinetic analysis suggests that differences may exist in the cellular localization of furin between different species. Collectively, these results indicate that the unusual role of cathepsin proteases in the life cycle of bat-borne viruses is not due to the lack of active furin-like proteases in these natural reservoir species; however, differences may exist between furin proteases present in fruit bats compared to furins in other mammalian species, and these differences may impact protease usage for viral glycoprotein processing.
    PLoS ONE 02/2015; 10(2):e0115736. DOI:10.1371/journal.pone.0115736 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background: Bat-borne viruses pose a potential risk to human health and are the focus of increasing scientific interest. To start gaining information about bat-transmitted viruses in Hungary, we tested multiple bat species for several virus groups between 2012 and 2013. Fecal samples were collected from bats across Hungary. We performed group-specific RT-PCR screening for astro-, calici-, corona-, lyssa-, othoreo-, paramyxo-, and rotaviruses. Positive samples were selected and sequenced for further phylogenetic analyses. A total of 447 fecal samples, representing 24 European bat species were tested. Novel strains of astroviruses, coronaviruses, and caliciviruses were detected and analyzed phylogenetically. Out of the 447 tested samples, 40 (9%) bats were positive for at least one virus. Bat-transmitted astroviruses (BtAstV) were detected in eight species with a 6.93% detection rate (95% confidence interval [CI] 4.854, 9.571). Coronaviruses (BtCoV) were detected in seven bat species with a detection rate of 1.79% (95% CI 0.849, 3.348), whereas novel caliciviruses (BtCalV) were detected in three bat species with a detection rate of 0.67% (95% CI 0.189, 1.780). Phylogenetic analyses revealed a great diversity among astrovirus strains, whereas the Hungarian BtCoV strains clustered together with both alpha- and betacoronavirus strains from other European countries. One of the most intriguing findings of our investigation is the discovery of novel BtCalVs in Europe. The Hungarian BtCalV did not cluster with any of the calcivirus genera identified in the family so far. We have successfully confirmed BtCoVs in numerous bat species. Furthermore, we have described new bat species harboring BtAstVs in Europe and found new species of CalVs. Further long-term investigations involving more species are needed in the Central European region for a better understanding on the host specificity, seasonality, phylogenetic relationships, and the possible zoonotic potential of these newly described viruses.
    Vector borne and zoonotic diseases (Larchmont, N.Y.) 12/2014; 14(12):846-55. DOI:10.1089/vbz.2014.1637 · 2.53 Impact Factor

Full-text (3 Sources)

Available from
May 19, 2014