Metal oxide nanostructures and their gas sensing properties: a review.

Department of Mechanical and Automotive Engineering, Anhui Polytechnic University, Wuhu 241000, China.
Sensors (Impact Factor: 2.05). 01/2012; 12(3):2610-31. DOI: 10.3390/s120302610
Source: PubMed

ABSTRACT Metal oxide gas sensors are predominant solid-state gas detecting devices for domestic, commercial and industrial applications, which have many advantages such as low cost, easy production, and compact size. However, the performance of such sensors is significantly influenced by the morphology and structure of sensing materials, resulting in a great obstacle for gas sensors based on bulk materials or dense films to achieve highly-sensitive properties. Lots of metal oxide nanostructures have been developed to improve the gas sensing properties such as sensitivity, selectivity, response speed, and so on. Here, we provide a brief overview of metal oxide nanostructures and their gas sensing properties from the aspects of particle size, morphology and doping. When the particle size of metal oxide is close to or less than double thickness of the space-charge layer, the sensitivity of the sensor will increase remarkably, which would be called "small size effect", yet small size of metal oxide nanoparticles will be compactly sintered together during the film coating process which is disadvantage for gas diffusion in them. In view of those reasons, nanostructures with many kinds of shapes such as porous nanotubes, porous nanospheres and so on have been investigated, that not only possessed large surface area and relatively mass reactive sites, but also formed relatively loose film structures which is an advantage for gas diffusion. Besides, doping is also an effective method to decrease particle size and improve gas sensing properties. Therefore, the gas sensing properties of metal oxide nanostructures assembled by nanoparticles are reviewed in this article. The effect of doping is also summarized and finally the perspectives of metal oxide gas sensor are given.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This research paper reports the deposition of nanostructured pure and Ni-doped ZnO thin films deposited at the substrate temperature of 523 K using simple and economical spray pyrolysis technique and subsequently post annealed at 673 K in air atmosphere for 3 h. Ni-doping greatly affected the crystallo-graphic orientation, surface morphology, roughness and room temperature sensing response. Noticeable change in the crystallite size, transmittance and electrical properties was observed. The room tempera-ture sensing characteristics like selectivity, response recovery studies, range of detection, stability and reproducibility of the undoped and Ni-doped ZnO thin films were investigated. Especially, the sensing elements exhibited an excellent selectivity towards ammonia. A lower detection limit of 5 and 25 ppm was observed for undoped and Ni-doped ZnO thin films respectively. The upper detection range was widened to 1000 ppm for the Ni-doped film.
    Applied Surface Science 06/2014; 311:405-412. · 2.54 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We fabricated and characterized a highly formaldehyde-sensitive gas sensor based on CuO nanocubes. Cu2O nanocubes were synthesized through a wet, facile, and mass-producible polyol process, and oxidized CuO nanocubes were prepared using thermal oxidation under air conditions. The synthesized nanocubes were monodisperse, and the average edge size was about 90 nm and average pore size about 52 nm. We determined the operating temperature of the gas sensors to be 300 °C, considering the proper sensitivity and a rapid response. At this operating temperature, the CuO nanocube gas sensors showed a high HCHO gas response, that is, logarithmic properties in an HCHO gas concentration range of 0.05–3 parts per million (ppm). The gas sensors demonstrated excellent reproducibility (coefficient of variation of 1.17% with 800 parts per million (ppb) at 300 °C) and a very low limit of detection of 6 ppb at 250 °C. Furthermore, among the tested gases that commonly exist in the indoor ambient air, like C6H6, NO2, CO, CO2, NH3, and HCHO, the CuO nanocube gas sensors showed the most strong response to HCHO gas at 300 °C. This investigation therefore indicates that an HCHO gas sensor using CuO nanocubes can be a simple and useful platform for sensing very hazardous indoor formaldehyde gas at several levels of ppb.
    Sensors and Actuators B Chemical 11/2014; 203:282–288. · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology.
    Frontiers in Chemistry 01/2013; 1:18.


Available from