Article

Evolutionary crossroads in developmental biology: hemichordates

Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96734, USA.
Development (Impact Factor: 6.27). 07/2012; 139(14):2463-75. DOI: 10.1242/dev.066712
Source: PubMed

ABSTRACT Hemichordates are a deuterostome phylum, the sister group to echinoderms, and closely related to chordates. They have thus been used to gain insights into the origins of deuterostome and chordate body plans. Developmental studies of this group have a long and distinguished history. Recent improvements in animal husbandry, functional tool development and genomic resources have resulted in novel developmental data from several species in this group. In this Primer, we introduce representative hemichordate species with contrasting modes of development and summarize recent findings that are beginning to yield important insights into deuterostome developmental mechanisms.

0 Bookmarks
 · 
107 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Hox gene cluster ranks among the greatest of biological discoveries of the past 30 years. Morphogenetic patterning genes are remarkable for the systems they regulate during major ontogenetic events, and for their expressions of molecular, temporal, and spatial colinearity. Recent descriptions of exceptions to these colinearities are suggesting deep phylogenetic signal that can be used to explore origins of entire deuterostome phyla. Among the most enigmatic of these deuterostomes in terms of unique body patterning are the echinoderms. However, there remains no overall synthesis of the correlation between this signal and the variations observable in the presence/absence and expression patterns of Hox genes.
    EvoDevo 06/2014; 5:22. DOI:10.1186/2041-9139-5-22 · 3.10 Impact Factor
    This article is viewable in ResearchGate's enriched format
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been established , or as part of the process of tree finding, practitioners need to know which calibrations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic precision , the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, ranging from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma.
    Palaeontologia Electronica 02/2015; 18:1-116. · 1.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hemichordates are the sister group of echinoderms, and together they are closely related to chordates within the deuterostome lineage. Therefore, hemichordates represent an important animal group for the understanding of both the evolution of developmental mechanisms in deuterostome animals and the origin of chordates. Recently, the majority of studies investigating hemichordates have focused on the direct-developing enteropneust hemichordate Saccoglossus kowalevskii; few have focused on the indirect-developing hemichordates, partly because of the lack of extensive genomic resources in these animals. In this study, we report the sequencing and analysis of a transcriptome from an indirect-developing enteropneust hemichordate Ptychodera flava. We sequenced a mixed cDNA library from six developmental stages using the Roche GS FLX Titanium System to generate more than 879,000 reads. These reads were assembled into 17,990 contigs with an average length of 1316bp. We found that 60% of the assembled contigs, along with 28% of the unassembled singleton reads, had significant hits to sequences in the NCBI database by a BLASTx search, and we also annotated these sequences and obtained Gene Ontology (GO) terms for 6744 contigs and 5802 singletons. We further identified candidate P. flava transcripts corresponding to genes involved in major developmental signaling pathways, including the Wnt, Notch and TGF-β signaling pathways. Using available genome/transcriptome datasets from the direct-developing hemichordate S. kowalevskii, the echinoderm Strongylocentrotus purpuratus and the chordate Branchiostoma floridae, we found that 90%, 80% and 73% of the annotated protein sequences in these respective species matched our P. flava transcriptome in a homology search. We also constructed a database for the P. flava transcriptome, and researchers can easily access this dataset online. Our dataset significantly increases the amount of available P. flava sequence data and can serve as a reference transcriptome for future studies using this species.
    Marine Genomics 05/2014; 15. DOI:10.1016/j.margen.2014.04.010 · 1.97 Impact Factor

Full-text

Download
359 Downloads
Available from
May 27, 2014