Use of aptamer tagging to identify in vivo protein binding partners of small regulatory RNAs.

Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany.
Methods in molecular biology (Clifton, N.J.) (Impact Factor: 1.29). 01/2012; 905:177-200. DOI: 10.1007/978-1-61779-949-5_11
Source: PubMed

ABSTRACT Small regulatory RNAs (sRNAs) are short, generally noncoding RNAs that act posttranscriptionally to control target gene expression. Over the past 10 years there has been a rapid expansion in the discovery and characterization of sRNAs in a diverse range of bacteria. Paradigm shifts in our understanding of the breadth of posttranscriptional control by sRNAs were achieved in a number of pioneering studies that involved immunoprecipitation of a known RNA chaperone, the near-ubiquitous Hfq, followed by sequencing to identify novel putative regulators and targets. To perform the converse experiment, we previously developed a method which uses an aptamer-tagged sRNA to allow purification of in vivo assembled RNA-protein complexes and subsequent identification of bound proteins. We successfully implemented this protocol using the Hfq-associated sRNA, InvR, tagged with a tandem repeat of the commonly used MS2-aptamer. Incorporation of the aptamer had no effect on sRNA stability or activity. InvR-MS2 could be effectively purified along with associated proteins, such as Hfq, using maltose binding protein fused to the MS2 coat protein (MBP-MS2) immobilized on an amylose column. Mass-spectroscopy was also used to identify previously uncharacterized protein partners. These results have been described previously (Said et al., Nucleic Acids Res 37:e133, 2009) and thus the figures presented here are intended solely as an illustrative guide to complement this detailed step-by-step protocol.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single-stranded oligonucleotide aptamers have attracted great attention in the past decade because of their diagnostic and therapeutic potential. These versatile, high affinity and specificity reagents are selected by an iterative in vitro process called SELEX, Systematic Evolution of Ligands by Exponential Enrichment. Numerous SELEX methods have been developed for aptamer selections; some that are simple and straightforward, and some that are specialized and complicated. The method of SELEX is crucial for selection of an aptamer with desired properties; however, success also depends on the starting aptamer library, the target molecule, aptamer enrichment monitoring assays, and finally, the analysis and characterization of selected aptamers. Here, we summarize key recent developments in aptamer selection methods, as well as other aspects of aptamer selection that have significant impact on the outcome. We discuss potential pitfalls and limitations in the selection process with an eye to aid researchers in the choice of a proper SELEX strategy, and we highlight areas where further developments and improvements are desired. We believe carefully designed multiplexed selection methods, when complemented with high-throughput downstream analysis and characterization assays, will yield numerous high-affinity aptamers to protein and small molecule targets, and thereby generate a vast array of reagents for probing basic biological mechanisms and implementing new diagnostic and therapeutic applications in the near future.
    Molecular therapy. Nucleic acids. 08/2014; 3:e183.