Article

Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) sensitizes LNCaP prostate cancer cells to TRAIL-induced apoptosis.

Department of Microbiology and Immunology, Medical University of Silesia in Katowice, Zabrze, Poland.
International Journal of Oncology (Impact Factor: 2.66). 06/2012; 41(3):818-28. DOI: 10.3892/ijo.2012.1527
Source: PubMed

ABSTRACT Naturally occurring phenolic compounds have been shown to sensitize prostate cancer cells to tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. TRAIL is a potent stimulator of apoptosis in cancer cells and an important immune effector molecule in the surveillance and elimination of developing tumours. However, many cancer cells are resistant to TRAIL-mediated death. In this study, we aimed to determine the mechanisms by which TRAIL resistance can be overcome in prostate cancer cells by 3,5-diprenyl-4-hydroxycinnamic acid (artepillin C). Artepillin C is a bioactive component of Brazilian green propolis that possesses antitumour and chemopreventive activities. TRAIL-resistant LNCaP prostate cancer cells were treated with TRAIL and artepillin C. Cytotoxicity was measured by MTT and lactate dehydrogenase (LDH) assays. Apoptosis was detected using Annexin V-FITC staining by flow cytometry and fluorescence microscopy. Death receptor (DR) (TRAIL-R1/DR4 and TRAIL-R2/DR5) expression was analyzed using flow cytometry. Mitochondrial membrane potential (∆ψm) was evaluated using DePsipher staining by fluorescence micro-scopy. The inhibition of NF-κB (p65) activation was confirmed with the ELISA-based TransAM NF-κB kit. Caspase-8 and caspase-3 activities were determined by colorimetric protease assays. The results showed that artepillin C sensitized the TRAIL-resistant LNCaP cells by engaging the extrinsic (receptor-mediated) and intrinsic (mitochondrial) apoptotic pathways. Artepillin C increased the expression of TRAIL-R2 and decreased the activity of NF-κB. Co-treatment with TRAIL and artepillin C induced the significant activation of caspase-8 and caspase-3, as well as the disruption of ∆ψm. These findings show that prostate cancer cells can be sensitized to TRAIL-mediated immunoprevention by artepillin C and confirm the role of phenolic compounds in prostate cancer immunochemoprevention.

0 Bookmarks
 · 
100 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neobavaisoflavone (NBIF), an isoflavone isolated from Psoralea corylifolia (Leguminosae), has striking anti-inflammatory and anti-cancer effects. NBIF inhibits the proliferation of prostate cancer in vitro and in vivo. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a key endogenous molecule that selectively induces apoptosis in cancer cells with little or no toxicity in normal cells. However, some cancer cells, including U373MG cells, are resistant to TRAIL-mediated apoptosis. We demonstrated that the cell viability, migration and invasion assay were used in U373MG glioma cells. In this study, we found that NBIF sensitizes human U373MG glioma cells to TRAIL-mediated apoptosis. Co-treatment of TRAIL and NBIF effectively induced Bid cleavage and activated caspases 3, 8, and 9. Importantly, DR5 expression was upregulated by NBIF. We also observed that the combination NBIF and TRAIL increased expression of BAX. We further demonstrate that NBIF induced TRAIL-mediated apoptosis in human glioma cells by suppressing migration and invasion, and by inhibiting anoikis resistance. Taken together, our results suggest that NBIF reduces the resistance of cancer cells to TRAIL and that the combination of NBIF and TRAIL may be a new therapeutic strategy for treating TRAIL-resistant glioma cells.
    Life sciences 11/2013; · 2.56 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Propolis is a natural product with antioxidant properties. In this study, we tested the efficacy of propolis against acute lung inflammation (ALI) caused by cigarette smoke (CS). C57BL6 male mice were exposed to CS and treated with propolis (200mg/kg orally, CS+P) or only with propolis (P). A Control group treated with propolis was sham-smoked (Control+P). We collected the lungs for histological and biochemical analyses. We observed an increase in alveolar macrophages and neutrophils in the CS group compared with the Control+P. These counts reduced in the CS+P group compared to the CS group. The treatment with propolis normalized all biochemical parameters in the CS+P group compared with the CS group, including nitrite, myeloperoxidase level, antioxidant enzyme activities (superoxide dismutase, catalase and glutathione peroxidase), reduced glutathione/oxidized glutathione ratio and malondialdehyde. Additionally, TNF-α expression reduced in the CS+P group when compared with the CS group. These data imply a potential antioxidant and anti-inflammatory role for propolis with regard to ALI caused by CS in mice.
    Bioorganic & medicinal chemistry 11/2013; · 2.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising agent in selectively killing tumor cells. However, TRAIL monotherapy has not been successful as many cancer cells are resistant to TRAIL. Chemotherapeutic agents, such as doxorubicin have been shown to act synergistically with TRAIL, but the exact mechanisms of actions are poorly understood. In this study, we performed high-throughput small interfering RNA screening and genome-wide gene expression profiling on doxorubicin-treated U1690 cells to explore novel mechanisms underlying doxorubicin-TRAIL synergy. The screening and expression profiling results were integrated and dihydroorotate dehydrogenase (DHODH) was identified as a potential candidate. DHODH is the rate-limiting enzyme in the pyrimidine synthesis pathway, and its expression was downregulated by doxorubicin. We demonstrated that silencing of DHODH or inhibition of DHODH activity by brequinar dramatically increased the sensitivity of U1690 cells to TRAIL-induced apoptosis both in 2D and 3D cultures, and was accompanied by downregulation of c-FLIPL as well as by mitochondrial depolarization. In addition, uridine, an end product of the pyrimidine synthesis pathway was able to rescue the sensitization effects initiated by both brequinar and doxorubicin. Furthermore, several other cancer cell lines, LNCaP, MCF-7 and HT-29 were also shown to be sensitized to TRAIL by brequinar. Taken together, our findings have identified a novel protein target and its inhibitor, brequinar, as a potential agent in TRAIL-based combinatorial cancer therapy and highlighted for the first time the importance of mitochondrial DHODH enzyme and pyrimidine pathway in mediating TRAIL sensitization in cancer cells.Oncogene advance online publication, 9 September 2013; doi:10.1038/onc.2013.313.
    Oncogene 09/2013; · 7.36 Impact Factor

Full-text

View
2 Downloads
Available from