Article

Dock3 regulates BDNF-TrkB signaling for neurite outgrowth by forming a ternary complex with Elmo and RhoG.

Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
Genes to Cells (Impact Factor: 2.73). 06/2012; 17(8):688-97. DOI: 10.1111/j.1365-2443.2012.01616.x
Source: PubMed

ABSTRACT Dock3, a new member of the guanine nucleotide exchange factor family, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes neurite outgrowth through the formation of a protein complex with Fyn and WAVE downstream of brain-derived neurotrophic factor (BDNF) signaling. Here, we report a novel Dock3-mediated BDNF pathway for neurite outgrowth. We show that Dock3 forms a complex with Elmo and activated RhoG downstream of BDNF-TrkB signaling and induces neurite outgrowth via Rac1 activation in PC12 cells. We also show the importance of Dock3 phosphorylation in Rac1 activation and show two key events that are necessary for efficient Dock3 phosphorylation: membrane recruitment of Dock3 and interaction of Dock3 with Elmo. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the central nervous system where it stimulates actin polymerization by multiple pathways.

0 Bookmarks
 · 
124 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Precise modulation of the cytoskeleton is involved in a variety of cellular processes including cell division, migration, polarity, and adhesion. In developing post-mitotic neurons, extracellular guidance cues not only trigger signaling cascades that act at a distance to indirectly regulate microtubule distribution, and assembly and disassembly in the growth cone, but also directly modulate microtubule stability and dynamics through coupling of guidance receptors with microtubules to control growth-cone turning. Microtubule-associated proteins including classical microtubule-associated proteins and microtubule plus-end tracking proteins are required for modulating microtubule dynamics to influence growth-cone steering. Multiple key signaling components, such as calcium, small GTPases, glycogen synthase kinase-3β, and c-Jun N-terminal kinase, link upstream signal cascades to microtubule stability and dynamics in the growth cone to control axon outgrowth and projection. Understanding the functions and regulation of microtubule dynamics in the growth cone provides new insights into the molecular mechanisms of axon guidance.
    Neuroscience Bulletin 06/2014; · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Toxoplasma encephalitis is caused by the opportunistic protozoan parasite Toxoplasma gondii. Primary infection with T. gondii in immunocompetent individuals remains largely asymptomatic. In contrast, in immunocompromised individuals, reactivation of the parasite results in severe complications and mortality. Molecular changes at the protein level in the host central nervous system and proteins associated with pathogenesis of toxoplasma encephalitis are largely unexplored. We used a global quantitative proteomic strategy to identify differentially regulated proteins and affected molecular networks in the human host during T. gondii infection with HIV co-infection.
    Clinical Proteomics 01/2014; 11(1).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dedicator of cytokinesis (Dock) family is composed of atypical guanine exchange factors (GEFs) that activate the Rho GTPases Rac1 and Cdc42. Rho GTPases are best documented for their roles in actin polymerization and they regulate important cellular functions, including morphogenesis, migration, neuronal development, and cell division and adhesion. To date, 11 Dock family members have been identified and their roles have been reported in diverse contexts. There has been increasing interest in elucidating the roles of Dock proteins in recent years and studies have revealed that they are potential therapeutic targets for various diseases, including glaucoma, Alzheimer’s disease, cancer, attention deficit hyperactivity disorder and combined immunodeficiency. Among the Dock proteins, Dock3 is predominantly expressed in the central nervous system and recent studies have revealed that Dock3 plays a role in protecting retinal ganglion cells from neurotoxicity and oxidative stress as well as in promoting optic nerve regeneration. In this review, we discuss the current understanding of the 11 Dock GEFs and their therapeutic potential, with a particular focus on Dock3 as a novel target for the treatment of glaucoma and other neurodegenerative diseases.
    Progress in Retinal and Eye Research 01/2014; · 9.44 Impact Factor

Full-text

View
2 Downloads
Available from
Jul 20, 2014