Article

Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression

Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China.
Journal of Basic Microbiology (Impact Factor: 1.2). 03/2013; 53(4). DOI: 10.1002/jobm.201100580
Source: PubMed

ABSTRACT It is generally known that genes dha B and dha T are responsible for 1,3-propanediol (1,3-PD) production in the presence of glycerol in Klebsiella pneumoniae and these genes are organized in one operon. In the present study, a genetic means of increasing the enzyme activities of 1,3-PD formation pathway through the over-expression of 1,3-PD opeorn was performed in K. pneumoniae S6. The recombinant strain S6-PD showed 27- and 15-fold increase in enzymatic activities of DhaB and DhaT, respectively with respect to wild-type strain while failed to improve the 1,3-PD yield due to the inadequacy of cofactor NADH. Therefore, in order to increase NADH availability, a NADH regeneration system was constructed by heterologous expression of NAD(+) -dependent formate dehydrogenase gene (fdh 1) from Candida boidinii and introduced into S6-PD to investigate its effects on the glycerol utilization and 1,3-PD formation. The results demonstrated that the increase of NADH availability could efficiently improve glycerol metabolism and promote 1,3-PD yield. (© 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

1 Follower
 · 
134 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previously, a safe strain, Bacillus amyloliquefaciens B10-127 was identified as an excellent candidate for industrial-scale microbial fermentation of 2,3-butanediol (2,3-BD). However, B. amyloliquefaciens fermentation yields large quantities of acetoin, lactate and succinate as by-products, and the 2,3-BD yield remains prohibitively low for commercial production. In the 2,3-butanediol metabolic pathway, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the conversion of 3-phosphate glyceraldehyde to 1,3-bisphosphoglycerate, with concomitant reduction of NAD(+) to NADH. In the same pathway, 2,3-BD dehydrogenase (BDH) catalyzes the conversion of acetoin to 2,3-BD with concomitant oxidation of NADH to NAD(+). In this study, to improve 2,3-BD production, we first over-produced NAD(+)-dependent GAPDH and NADH-dependent BDH in B. amyloliquefaciens. Excess GAPDH reduced the fermentation time, increased the 2,3-BD yield by 12.7%, and decreased the acetoin titer by 44.3%. However, the process also enhanced lactate and succinate production. Excess BDH increased the 2,3-BD yield by 16.6% while decreasing acetoin, lactate and succinate production, but prolonged the fermentation time. When BDH and GAPDH were co-overproduced in B. amyloliquefaciens, the fermentation time was reduced. Furthermore, in the NADH-dependent pathways, the molar yield of 2,3-BD was increased by 22.7%, while those of acetoin, lactate and succinate were reduced by 80.8%, 33.3% and 39.5%, relative to the parent strain. In fed-batch fermentations, the 2,3-BD concentration was maximized at 132.9 g/l after 45 h, with a productivity of 2.95 g/l·h. Co-overexpression of bdh and gapA genes proved an effective method for enhancing 2,3-BD production and inhibiting the accumulation of unwanted by-products (acetoin, lactate and succinate). To our knowledge, we have attained the highest 2,3-BD fermentation yield thus far reported for safe microorganisms.
    PLoS ONE 10/2013; 8(10):e76149. DOI:10.1371/journal.pone.0076149 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Higher initial glycerol loadings (620 mM) have a negative effect on growth and 1,3-propanediol (1,3-PDO) synthesis in Clostridium butyricum DSM 10702 relative to lower initial glycerol concentrations (170 mM). To help understand metabolic shifts associated with elevated glycerol, protein expression levels were quantified by LC/MS/MS analyses. Thirty one (31) proteins involved in conversion of glycerol to 1,3-PDO and other by-products were analyzed by multiple reaction monitoring (MRM). The analyses revealed that high glycerol concentrations reduced cell growth. The expression levels of most proteins in glycerol catabolism pathways were down-regulated, consistent with the slower growth rates observed. However, at high initial glycerol concentrations, some of the proteins involved in the butyrate synthesis pathways such as a putative ethanol dehydrogenase (CBY_3753) and a 3-hydroxybutyryl-CoA dehydrogenase (CBY_3045) were up-regulated in both exponential and stationary growth phases. Expression levels of proteins (CBY_0500, CBY_0501 and CBY_0502) involved in the reductive pathway of glycerol to 1,3-PDO were consistent with glycerol consumption and product concentrations observed during fermentation at both glycerol concentrations, and the molar yields of 1,3-PDO were similar in both cultures. This is the first report that correlates expression levels of glycerol catabolism enzymes with synthesis of 1,3-PDO in C. butyricum. The results revealed that significant differences in the expression of a small subset of proteins were observed between exponential and stationary growth phases at both low and high glycerol concentrations.
    01/2014; 4(1):63. DOI:10.1186/s13568-014-0063-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biocatalysis has made tremendous advances in the field of synthesis of industrially important products and intermediates. Cofactors are an important part of many enzymes which are involved in biocatalysis. These cofactors are expensive and stoichiometric addi- tions are not economically feasible. This necessitates the in situ cofactor regeneration in biocatalytic pro- cesses. Various methods of regeneration of NAD(H)/ NADP(H), an important class of cofactors, have been reviewed in this article. We discuss their salient fea- tures, suitability for current bioprocesses, drawbacks and scope of improvement.
    Current science 04/2014; 106(7):946. · 0.83 Impact Factor

Full-text

Download
99 Downloads
Available from
May 20, 2014