Article

Neural processing of sensory and emotional-communicative information associated with the perception of vicarious pain

Department of psychology, Université de Montreal, Quebec, Canada.
NeuroImage (Impact Factor: 6.13). 06/2012; 63(1):54-62. DOI: 10.1016/j.neuroimage.2012.06.030
Source: PubMed

ABSTRACT The specific neural processes underlying vicarious pain perception are not fully understood. In this functional imaging study, 20 participants viewed pain-evoking or neutral images displaying either sensory or emotional-communicative information. The pain images displayed nociceptive agents applied to the hand or the foot (sensory information) or facial expressions of pain (emotional-communicative information) and were matched with their neutral counterparts. Combining pain-evoking and neutral images showed that body limbs elicited greater activity in sensory motor regions, whereas midline frontal and parietal cortices and the amygdala responded more strongly to faces. The pain-evoking images elicited greater activity than their neutral counterparts in the bilateral inferior frontal gyrus (IFG), the left inferior parietal lobule (IPL) and the bilateral extrastriate body area. However, greater pain-related activity was observed in the rostral IPL when images depicted a hand or foot compared to a facial expression of pain, suggesting a more specific involvement in the coding of somato-motor information. Posterior probability maps enabling Bayesian inferences further showed that the anterior IFG (BA 45 and 47) was the only region showing no intrinsic probability of activation by the neutral images, consistent with a role in the extraction of the meaning of pain-related visual cues. Finally, inter-individual empathy traits correlated with responses in the supracallosal mid/anterior cingulate cortex and the anterior insula when pain-evoking images of body limbs or facial expressions were presented, suggesting that these regions regulated the observer's affective-motivational response independent from the channels from which vicarious pain is perceived.

1 Follower
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perception of pain in others via facial expressions has been shown to involve brain areas responsive to self-pain, biological motion, as well as both performed and observed motor actions. Here, we investigated the involvement of these different regions during emotional and motor mirroring of pain expressions using a two-task paradigm, and including both observation and execution of the expressions. BOLD responses were measured as subjects watched video clips showing different intensities of pain expression and, after a variable delay, either expressed the amount of pain they perceived in the clips (pain task), or imitated the facial movements (movement task). In the pain task condition, pain coding involved overlapping activation across observation and execution in the anterior cingulate cortex, supplementary motor area, inferior frontal gyrus/anterior insula, and the inferior parietal lobule, and a pain-related increase (pain vs. neutral) in the anterior cingulate cortex/supplementary motor area, the right inferior frontal gyrus, and the postcentral gyrus. The 'mirroring' response was stronger in the inferior frontal gyrus and middle temporal gyrus/superior temporal sulcus during the pain task, and stronger in the inferior parietal lobule in the movement task. These results strongly suggest that while motor mirroring may contribute to the perception of pain expressions in others, interpreting these expressions in terms of pain content draws more heavily on networks involved in the perception of affective meaning.
    PLoS ONE 02/2015; 10(2):e0107526. DOI:10.1371/journal.pone.0107526 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vicarious embarrassment (VE) is an emotion triggered by the observation of others' pratfalls or social norm violations. Several explanatory approaches have been suggested to explain the source of this phenomenon, including perspective taking abilities or ingroup identification. Knowledge about its biological bases, however, is scarce. To gain a better understanding, the present study investigated neural activation patterns in response to video clips from reality TV shows. Reality TV is well known for presenting social norm violations, flaws and pratfalls of its protagonists in real life situations thereby qualifying as an ecological valid trigger for VE. N=60 healthy participants viewed stand stills from previously watched video clips taken from German reality TV-shows while undergoing functional magnetic resonance imaging. The clips were preselected for high versus low VE content in a pilot study. Besides the investigation of differences in brain activation elicited by VE versus control stand stills (blocked design contrast), we performed additional exploratory functional connectivity analyses (psychophysiological interaction; PPI) to detect VE related brain networks. Compared to the low VE condition, participants in the high VE condition showed a higher activation in the middle temporal gyrus, the supramarginal gyrus, the right inferior frontal gyrus and the gyrus rectus. Functional connectivity analyses confirmed increased connectivity of these regions with the anterior cingulate in the VE condition. Moreover, self-ratings of VE and brain activity were correlated positively. Reality TV formats with high VE content activate brain regions associated with Theory of Mind, but also with empathic concern and social identity. Therefore, our results support the idea that the ability to put oneself in other person's shoes is a major prerequisite for VE. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 01/2015; DOI:10.1016/j.neuroimage.2015.01.022 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that perceiving the pain of others activates brain regions in the observer associated with both somatosensory and affective-motivational aspects of pain, principally involving regions of the anterior cingulate and anterior insula cortex. The degree of these empathic neural responses is modulated by racial bias, such that stronger neural activation is elicited by observing pain in people of the same racial group compared with people of another racial group. The aim of the present study was to examine whether a more general social group category, other than race, could similarly modulate neural empathic responses and perhaps account for the apparent racial bias reported in previous studies. Using a minimal group paradigm, we assigned participants to one of two mixed-race teams. We use the term race to refer to the Chinese or Caucasian appearance of faces and whether the ethnic group represented was the same or different from the appearance of the participant' own face. Using fMRI, we measured neural empathic responses as participants observed members of their own group or other group, and members of their own race or other race, receiving either painful or non-painful touch. Participants showed clear group biases, with no significant effect of race, on behavioral measures of implicit (affective priming) and explicit group identification. Neural responses to observed pain in the anterior cingulate cortex, insula cortex, and somatosensory areas showed significantly greater activation when observing pain in own-race compared with other-race individuals, with no significant effect of minimal groups. These results suggest that racial bias in neural empathic responses is not influenced by minimal forms of group categorization, despite the clear association participants showed with in-group more than out-group members. We suggest that race may be an automatic and unconscious mechanism that drives the initial neural responses to observed pain in others.
    PLoS ONE 12/2013; 8(12):e84001. DOI:10.1371/journal.pone.0084001 · 3.53 Impact Factor