Article

Tandem fluorescent protein timers for in vivo analysis of protein dynamics.

Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.
Nature Biotechnology (Impact Factor: 39.08). 06/2012; 30(7):708-14. DOI: 10.1038/nbt.2281
Source: PubMed

ABSTRACT The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule–mediated protein degradation.

0 Followers
 · 
132 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Cells take up proteins and other useful material (called cargo) from their external environment through a process known as endocytosis. To start with, the cargo accumulates in a patch on the surface of the cell. On the inner side of the cell's membrane, a protein called clathrin gathers around the patch of cargo. Clathrin molecules and many other proteins bind together to make a lattice-like coat that causes the membrane to curve inwards and form a pocket that contains the cargo. This continues until the cargo is completely surrounded by membrane and eventually forms a bubble-like structure, or ‘vesicle’, that moves into the cell. More than 50 other proteins are involved in the endocytosis. These proteins arrive at the site of endocytosis in a particular order, complete their tasks and then move away to be used in further rounds of endocytosis. It is not clear how these proteins are organized to complete these steps because it is technically difficult to track the movements of many proteins at the same time. Here, Picco et al. developed a new fluorescence microscopy method that enabled them to track the positions of many of the proteins involved in endocytosis in yeast cells in real time. The experiments revealed when the proteins arrived at the site of endocytosis and how they assembled in relation to the membrane. For example, a group of proteins called N-BAR proteins formed an extended lattice covering the sides of the pocket that forms as the membrane curves inwards. To transform the flat membrane into a vesicle, a network of filaments made of a protein called actin needs to form at the site of endocytosis. The new method shows that the actin filaments grow in a small region at the base of the developing vesicle. By combining different types of microscopy data, Picco et al. were able to build a comprehensive model describing when the proteins involved in endocytosis move and assemble. The next challenge will be to understand the physics behind the molecular machine composed of these many proteins and the cell membrane. DOI: http://dx.doi.org/10.7554/eLife.04535.002
    eLife Sciences 02/2015; 4. DOI:10.7554/eLife.04535 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial proteins carry out diverse cellular functions including ATP synthesis, ion homeostasis, cell death signaling, and fatty acid metabolism and biogenesis. Compromised mitochondrial quality control is implicated in various human disorders including cardiac diseases. Recently it has emerged that mitochondrial protein turnover can serve as an informative cellular parameter to characterize mitochondrial quality and uncover disease mechanisms. The turnover rate of a mitochondrial protein reflects its homeostasis and dynamics under the quality control systems acting on mitochondria at a particular cell state. This review article summarizes some recent advances and outstanding challenges for measuring the turnover rates of mitochondrial proteins in health and disease. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Journal of Molecular and Cellular Cardiology 11/2014; 78. DOI:10.1016/j.yjmcc.2014.10.012 · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.
    Nature 12/2014; 516(7531-7531):410-413. DOI:10.1038/nature14096 · 42.35 Impact Factor

Full-text (2 Sources)

Download
13 Downloads
Available from
Aug 6, 2014