Article

A system for exposing molecules and cells to biologically relevant and accurately controlled steady-state concentrations of nitric oxide and oxygen.

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Nitric Oxide (Impact Factor: 3.27). 06/2012; 27(3):161-8. DOI: 10.1016/j.niox.2012.06.004
Source: PubMed

ABSTRACT Nitric oxide (NO) plays key roles in cell signaling and physiology, with diverse functions mediated by NO concentrations varying over three orders-of-magnitude. In spite of this critical concentration dependence, current approaches to NO delivery in vitro result in biologically irrelevant and poorly controlled levels, with hyperoxic conditions imposed by ambient air. To solve these problems, we developed a system for controlled delivery of NO and O(2) over large concentration ranges to mimic biological conditions. Here we describe the fabrication, operation and calibration of the delivery system. We then describe applications for delivery of NO and O(2) into cell culture media, with a comparison of experimental results and predictions from mass transfer models that predict the steady-state levels of various NO-derived reactive species. We also determined that components of culture media do not affect the steady-state levels of NO or O(2) in the device. This system provides critical control of NO delivery for in vitro models of NO biology and chemistry.

0 Bookmarks
 · 
75 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrogen dioxide is formed endogenously via the oxidation of NO by O(2) or O(2)(-), and from NO(2)(-) via peroxidases, among other pathways. This radical has many potential biological targets and its concentration, like that of NO and other reactive nitrogen species, is thought to be elevated at sites of inflammation. To investigate the specific cytotoxic or mutagenic effects of NO(2), it is desirable to be able to maintain its concentration at constant, predictable, and physiological levels in cell cultures, in the absence of NO. To do this, a delivery system was constructed in which NO(2)-containing gas mixtures contact a liquid within a small (110ml) stirred reactor. In such gas mixtures NO(2) is present in equilibrium with its dimer, N(2)O(4). The uptake of NO(2) and N(2)O(4) was characterized by measuring the accumulation rates of NO(2)(-) and NO(3)(-), the stable products of N(2)O(4) hydrolysis, in buffered aqueous solutions. In some experiments NO(2)-reactive 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonate) (ABTS) was included and formation of the stable ABTS radical was measured. A reaction-diffusion model was developed that predicts the accumulation rates of all three products to within 15% for gas-phase concentrations of NO(2) spanning three orders of magnitude. The model also provides estimates for the NO(2) concentration in the liquid. This system should be useful for exposing cells to NO(2) concentrations similar to those in vivo.
    Free Radical Biology & Medicine 10/2012; · 5.27 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The intestine comprises an exceptional venue for a dynamic and complex interplay of numerous chemical and biological processes. Here, multiple chemical and biological systems, including the intestinal tissue itself, its associated immune system, the gut microbiota, xenobiotics, and metabolites meet and interact to form a sophisticated and tightly regulated state of tissue homoeostasis. Disturbance of this homeostasis can cause inflammatory bowel disease (IBD) - a chronic disease of multifactorial etiology that is strongly associated with increased risk for cancer development. This review addresses recent developments in research into chemical and biological mechanisms underlying the etiology of inflammation-induced colon cancer. Beginning with a general overview of reactive chemical species generated during colonic inflammation, the mechanistic interplay between chemical and biological mediators of inflammation, the role of genetic toxicology and microbial pathogenesis in disease development are discussed. When possible, we systematically compare evidence from studies utilizing human IBD patients with experimental investigations in mice. The comparison reveals that many strong pathological and mechanistic correlates exist between mouse models of colitis-associated cancer, and the clinically relevant situation in humans. We also summarize several emerging issues in the field, such as the carcinogenic potential of novel inflammation-related DNA adducts and genotoxic microbial factors, the systemic dimension of inflammation-induced genotoxicity, and the complex role of genome maintenance mechanisms during these processes. Taken together, current evidence points to the induction of genetic and epigenetic alterations by chemical and biological inflammatory stimuli ultimately leading to cancer formation.
    Free Radical Research 08/2013; · 3.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) research in biomedicine has been hampered by the absence of a method that will allow quantitative measurement of NO in biological tissues with high sensitivity and selectivity, and with adequate spatial and temporal resolution. 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM) is a NO sensitive fluorescence probe that has been used widely for qualitative assessment of cellular NO production. However, calibration of the fluorescent signal and quantification of NO concentration in cells and tissues using fluorescent probes, have provided significant challenge. In this study we utilize a combination of mathematical modeling and experimentation to elucidate the kinetics of NO/DAF-FM reaction in solution. Modeling and experiments suggest that the slope of fluorescent intensity (FI) can be related to NO concentration according to the equation: ddtF1=2αk(1)NO(2)O(2)DAF-FMkNO+DAF-FM where α is a proportionality coefficient that relates FI to unit concentration of activated DAF-FM, k(1) is the NO oxidation rate constant, and k was estimated to be 4.3±0.6. The FI slope exhibits saturation kinetics with DAF-FM concentration. Interestingly, the effective half-maximum constant (EC(50)) increases proportionally to NO concentration. This result is not in agreement with the proposition that N(2)O(3) is the NO oxidation byproduct that activates DAF-FM. Kinetic analysis suggests that the reactive intermediate should exhibit NO-dependent consumption and thus NO(2)() is a more likely candidate. The derived rate law can be used for the calibration of DAF-FM fluorescence and the quantification of NO concentration in biological tissues.
    Nitric Oxide 10/2012; · 3.27 Impact Factor