Genome-wide Transcriptome Profiling Reveals the Functional Impact of Rare De Novo and Recurrent CNVs in Autism Spectrum Disorders

Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, 90095, USA.
The American Journal of Human Genetics (Impact Factor: 10.99). 06/2012; 91(1):38-55. DOI: 10.1016/j.ajhg.2012.05.011
Source: PubMed

ABSTRACT Copy-number variants (CNVs) are a major contributor to the pathophysiology of autism spectrum disorders (ASDs), but the functional impact of CNVs remains largely unexplored. Because brain tissue is not available from most samples, we interrogated gene expression in lymphoblasts from 244 families with discordant siblings in the Simons Simplex Collection in order to identify potentially pathogenic variation. Our results reveal that the overall frequency of significantly misexpressed genes (which we refer to here as outliers) identified in probands and unaffected siblings does not differ. However, in probands, but not their unaffected siblings, the group of outlier genes is significantly enriched in neural-related pathways, including neuropeptide signaling, synaptogenesis, and cell adhesion. We demonstrate that outlier genes cluster within the most pathogenic CNVs (rare de novo CNVs) and can be used for the prioritization of rare CNVs of potentially unknown significance. Several nonrecurrent CNVs with significant gene-expression alterations are identified (these include deletions in chromosomal regions 3q27, 3p13, and 3p26 and duplications at 2p15), suggesting that these are potential candidate ASD loci. In addition, we identify distinct expression changes in 16p11.2 microdeletions, 16p11.2 microduplications, and 7q11.23 duplications, and we show that specific genes within the 16p CNV interval correlate with differences in head circumference, an ASD-relevant phenotype. This study provides evidence that pathogenic structural variants have a functional impact via transcriptome alterations in ASDs at a genome-wide level and demonstrates the utility of integrating gene expression with mutation data for the prioritization of genes disrupted by potentially pathogenic mutations.

Download full-text


Available from: Yuan Tian, Jul 02, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The psychiatric disorders autism and schizophrenia have a strong genetic component, and copy number variants (CNVs) are firmly implicated. Recurrent deletions and duplications of chromosome 16p11.2 confer a high risk for both diseases, but the pathways disrupted by this CNV are poorly defined. Here we investigate the dynamics of the 16p11.2 network by integrating physical interactions of 16p11.2 proteins with spatiotemporal gene expression from the developing human brain. We observe profound changes in protein interaction networks throughout different stages of brain development and/or in different brain regions. We identify the late mid-fetal period of cortical development as most critical for establishing the connectivity of 16p11.2 proteins with their co-expressed partners. Furthermore, our results suggest that the regulation of the KCTD13-Cul3-RhoA pathway in layer 4 of the inner cortical plate is crucial for controlling brain size and connectivity and that its dysregulation by de novo mutations may be a potential determinant of 16p11.2 CNV deletion and duplication phenotypes. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 02/2015; 85(4):742-54. DOI:10.1016/j.neuron.2015.01.010 · 15.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Down syndrome (DS) is due to increased copy number of human chromosome 21. The contribution of different genetic regions has been tested using mouse models. As shown previously, the Abcg1-U2af1 genetic region contributes to cognitive defects in working and short-term recognition memory in Down syndrome mouse models. Here we analyzed the impact of monosomy of the same genetic interval using a new mouse model, named Ms2Yah. We used several cognitive paradigms, and did not detect defects in the object recognition nor the Morris water maze tests. However, surprisingly, Ms2Yah mice displayed increased associative memory in a pure contextual fear conditioning test, and decreased social novelty interaction along with a larger long term potentiation recorded in the CA1 area following stimulation of Schaffer collaterals. Whole genome expression studies carried out on hippocampus showed that only the transcription of a small number of genes is affected, mainly from the genetic interval (Cbs, Rsph1, Wdr4), with a few additional ones, including the postsynaptic Gabrr2, Gabbr1, Grid2p, Park2 and Dlg1 and the components of the Ubiquitin mediated proteolysis (Anapc1, Rnf7, Huwe1, Park2). The Abcg1-U2af1 region is undeniably encompassing dosage sensitive genes or elements whose change in copy number directly impact learning and memory, synaptic function and autistic related behavior.
    Genetics 04/2014; 197(3). DOI:10.1534/genetics.114.165241 · 4.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variations (CNVs) contribute to neuropsychiatric diseases, which may be partly mediated by their effects on gene expression. However, few studies have assessed the influence of CNVs on gene expression in the brain. The objective was to perform an unbiased comprehensive survey of influence of CNVs on gene expression in human brain tissues. CNV regions (CNVRs) were identified in 72 individuals (23 schizophrenia, 23 bipolar patients and 26 controls). Significant associations between the CNVRs and gene expression levels were observed for 583 CNVR-expression probe pairs (293 unique eCNVRs and 429 unique transcripts), after corrections for multiple testing and controlling the effect of the number of subjects with CNVRs by label swapping permutations. These CNVRs affecting gene expression (eCNVRs) were significantly enriched for rare/low frequency (p=1.087×10(-10)) and gene-harbouring CNVRs (p=1.4×10(-6)). Transcripts overlapping CNVRs were significantly enriched for Glutathione metabolism and Oxidative stress only for cases but not for controls. Moreover, 72 (24.6%) of eCNVRs were located within the chromosomal aberration regions implicated in psychiatric-disorders; 16p11.2, 1q21.1, 22q11.2, 3q29, 15q11.2, 17q12 and 16p13.1. These results shed light on the mechanism of how CNVs confer a risk for psychiatric disorders.
    Neuroscience Research 11/2013; 79. DOI:10.1016/j.neures.2013.10.009 · 2.15 Impact Factor