Article

Optical Control of Endogenous Proteins with a Photoswitchable Conditional Subunit Reveals a Role for TREK1 in GABAB Signaling

Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, 271 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720, USA.
Neuron (Impact Factor: 15.98). 06/2012; 74(6):1005-14. DOI: 10.1016/j.neuron.2012.04.026
Source: PubMed

ABSTRACT Selective ligands are lacking for many neuronal signaling proteins. Photoswitched tethered ligands (PTLs) have enabled fast and reversible control of specific proteins containing a PTL anchoring site and have been used to remote control overexpressed proteins. We report here a scheme for optical remote control of native proteins using a "photoswitchable conditional subunit" (PCS), which contains the PTL anchoring site as well as a mutation that prevents it from reaching the plasma membrane. In cells lacking native subunits for the protein, the PCS remains nonfunctional internally. However, in cells expressing native subunits, the native subunit and PCS coassemble, traffic to the plasma membrane, and place the native protein under optical control provided by the coassembled PCS. We apply this approach to the TREK1 potassium channel, which lacks selective, reversible blockers. We find that TREK1, typically considered to be a leak channel, contributes to the hippocampal GABA(B) response.

0 Followers
 · 
190 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0460). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0460 was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0460 was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0460 in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0460 in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0460 was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS). They express a variety of neurotransmitter receptors that can induce widespread chemical excitation, placing these cells in an optimal position to exert global effects on brain physiology. However, the activity patterns of only a small fraction of astrocytes have been examined and techniques to manipulate their behavior are limited. As a result, little is known about how astrocytes modulate CNS function on synaptic, microcircuit, or systems levels. Here, we review current and emerging approaches for visualizing and manipulating astrocyte activity in vivo. Deciphering how astrocyte network activity is controlled in different physiological and pathological contexts is crucial for defining their roles in the healthy and diseased CNS. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Current Opinion in Neurobiology 06/2015; 32. DOI:10.1016/j.conb.2015.01.015 · 6.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian neurotransmitter-gated receptors can be conjugated to photoswitchable tethered ligands (PTLs) to enable photoactivation, or photoantagonism, while preserving normal function at neuronal synapses. "MAG" PTLs for ionotropic and metabotropic glutamate receptors (GluRs) are based on an azobenzene photoswitch that is optimally switched into the liganding state by blue or near-UV light, wavelengths that penetrate poorly into the brain. To facilitate deep-tissue photoactivation with near-infrared light, we measured the efficacy of two-photon (2P) excitation for two MAG molecules using nonlinear spectroscopy. Based on quantitative characterization, we find a recently designed second generation PTL, l-MAG0460, to have a favorable 2P absorbance peak at 850 nm, enabling efficient 2P activation of the GluK2 kainate receptor, LiGluR. We also achieve 2P photoactivation of a metabotropic receptor, LimGluR3, with a new mGluR-specific PTL, d-MAG0460. 2P photoswitching is efficiently achieved using digital holography to shape illumination over single somata of cultured neurons. Simultaneous Ca(2+)-imaging reports on 2P photoswitching in multiple cells with high temporal resolution. The combination of electrophysiology or Ca(2+) imaging with 2P activation by optical wavefront shaping should make second generation PTL-controlled receptors suitable for studies of intact neural circuits.
    Proceedings of the National Academy of Sciences 02/2015; DOI:10.1073/pnas.1416942112 · 9.81 Impact Factor