Article

Determination of Size, Morphology, and Nitrogen Impurity Location in Treated Detonation Nanodiamond by Transmission Electron Microscopy

Advanced Functional Materials (Impact Factor: 11.81). 07/2009; 19(13):2116 - 2124. DOI: 10.1002/adfm.200801872

ABSTRACT Size, morphology, and nitrogen impurity location, all of which are all thought to be related to the luminescent properties of detonation nanodiamonds, are determined in several detonation nanodiamond samples using a combination of transmission electron microscopy techniques. Results obtained from annealed and cleaned detonation nanodiamond samples are compared to results from conventionally purified detonation nanodiamond. Detailed electron energy loss spectroscopy combined with model-based quantification provides direct evidence for the sp3 like embedding of nitrogen impurities into the diamond cores of all the studied nanodiamond samples. Simultaneously, the structure and morphology of the cleaned detonation nanodiamond particles are studied using high resolution transmission electron microscopy. The results show that the size and morphology of detonation nanodiamonds can be modified by temperature treatment and that by applying a special cleaning procedure after temperature treatment, nanodiamond particles with clean facets almost free from sp2 carbon can be prepared. These clean facets are clear evidence that nanodiamond cores are not necessarily in coexistence with a graphitic shell of non-diamond carbon.

Download full-text

Full-text

Available from: Stuart Turner, Aug 20, 2015
1 Follower
 · 
202 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent defects in noncytotoxic diamond nanoparticles are candidates for qubits in quantum computing, optical labels in biomedical imaging, and sensors in magnetometry. For each application these defects need to be optically and thermodynamically stable and included in individual particles at suitable concentrations (singly or in large numbers). In this Letter, we combine simulations, theory, and experiment to provide the first comprehensive and generic prediction of the size, temperature, and nitrogen-concentration-dependent stability of optically active N-V defects in nanodiamonds.
    Nano Letters 09/2009; 9(10):3555-64. DOI:10.1021/nl9017379 · 13.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This chapter will detail the requirements of modern detonation nanodiamonds (DNDs) intended for biomedical applications, beginning with DND material preparations and followed by bio-related applications developed at International Technology Center. DNDs are one of the most commercially promising nanodiamonds with a primary particle size of 4–5 nm, produced by detonation of carbon-containing explosives. The structural diversity of DNDs will be described, which depend upon synthesis conditions, postsynthesis processes, and modifications. Bioapplications reviewed include ballistic delivery of bio-functionalized DND into cells, photoluminescent biolabeling, biotarget capturing and collection by electrophoretic manipulation of DNDs, and health care applications. DNDs are advantageous when compared with the other types of nanoparticles due to DND large scale synthesis, small primary particle size, facile surface functionalization, stable photoluminescence as well as biocompatibility. Currently, biotechnology applications have shown that NDs can be used for bioanalytical purposes such as protein purification or fluorescent biolabeling, while research is in the developing stages for DNDs applied as diagnostic probes, delivery vehicles, enterosorbents and advanced medical device applications.
    11/2009: pages 79-116;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Synthesis methods (ion and laser bombarding, CVD, hydrothermal, ultrasonic, electrochemical, and detonation techniques) for obtaining various forms of nanodiamonds (NDs) are generalized. Structure, physical and chemical properties, functionalization of NDs and composites on its basis are discussed, as well as their applications in medicine, electrochemistry, materials chemistry and technology.
    Synthesis and Reactivity in Inorganic Metal-Organic and Nano-Metal Chemistry 01/2010; 40(2):84-101. DOI:10.3109/10799890903555665 · 0.52 Impact Factor
Show more