Article

Angiotensin‐converting enzyme 2: a new target for neurogenic hypertension

Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
Experimental physiology (Impact Factor: 3.17). 04/2010; 95(5):601 - 606. DOI: 10.1113/expphysiol.2009.047407

ABSTRACT Overactivity of the renin–angiotensin system (RAS) is involved in the pathogenesis of hypertension, and an overactive brain RAS has been highlighted in several genetic and experimental models. Until now, angiotensin II (Ang II) was thought to be the main effector of this system, and the angiotensin-converting enzyme (ACE)–Ang II–Ang II type 1 receptor axis was the main target for antihypertensive therapies. A new member of the RAS, ACE2 (angiotensin-converting enzyme type 2), has been identified in organs and tissues related to cardiovascular function (e.g. heart, kidney and blood vessels) and appears to be part of a counter-regulatory pathway to buffer the excess of Ang II. We recently identified the ACE2 protein in brain regions involved in the central regulation of blood pressure and showed that it regulates, and is regulated by, other components of the RAS. Here, we present evidence for the involvement of brain ACE2 in the central regulation of blood pressure, autonomic and cardiac function. We show that lack of ACE2 is deleterious for the central regulation of blood pressure and that brain ACE2 gene therapy can restore baroreflex and autonomic functions and prevent the development of hypertension. Additionally, and independently of a reduction in Ang II levels, we will highlight some of the mechanisms responsible for the beneficial effects of central ACE2 in cardiovascular function.

0 Bookmarks
 · 
87 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitric oxide (NO) deficiency is involved in the development of hypertension, a condition that can originate early in life. We examined whether NO deficiency contributed to programmed hypertension in offspring from mothers with calorie-restricted diets and whether melatonin therapy prevented this process. We examined 3-month-old male rat offspring from four maternal groups: untreated controls, 50% calorie-restricted (CR) rats, controls treated with melatonin (0.01% in drinking water), and CR rats treated with melatonin (CR + M). The effect of melatonin on nephrogenesis was analyzed using next-generation sequencing. The CR group developed hypertension associated with elevated plasma asymmetric dimethylarginine (ADMA, a nitric oxide synthase inhibitor), decreased L-arginine, decreased L-arginine-to-ADMA ratio (AAR), and decreased renal NO production. Maternal melatonin treatment prevented these effects. Melatonin prevented CR-induced renin and prorenin receptor expression. Renal angiotensin-converting enzyme 2 protein levels in the M and CR + M groups were also significantly increased by melatonin therapy. Maternal melatonin therapy had long-term epigenetic effects on global gene expression in the kidneys of offspring. Conclusively, we attributed these protective effects of melatonin on CR-induced programmed hypertension to the reduction of plasma ADMA, restoration of plasma AAR, increase of renal NO level, alteration of renin-angiotensin system, and epigenetic changes in numerous genes.
    Oxidative medicine and cellular longevity. 01/2014; 2014:283180.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that mice which overexpress human renin and angiotensinogen (R+A+) show enhanced cerebral damage in both in vivo and in vitro experimental ischemia models. Angiotensin converting enzyme 2 (ACE2) counteracts the effects of angiotensin (Ang-II) by transforming it into Ang-(1-7), thus reducing the ligand for the AT1 receptor and increasing stimulation of the Mas receptor. Triple transgenic mice, SARA, which specifically overexpress ACE2 in neurons of R+A+ mice were used to study the role of ACE2 in ischemic stroke using oxygen and glucose deprivation (OGD) of brain slices as an in vitro model. We examined tissue swelling, the production of reactive oxygen species (ROS), and cell death in cerebral cortex (CX) and the hippocampal CA1 region during OGD. Expression levels of NADPH oxidase isoforms, Nox2 and Nox4 were measured using western blots. Results show that SARA mice and R+A+ mice treated with the Mas receptor agonist Ang-(1-7) had less swelling, cell death, and ROS production in CX and CA1 areas compared to those in R+A+ animals. Treatment of slices from SARA mice with the Mas antagonist A779 eliminated this protection. Finally, western blots revealed less Nox2 and Nox4 expression in SARA mice compared with R+A+ mice both before and after OGD. We suggest that reduced brain swelling and cell death observed in SARA animals exposed to OGD results from diminished ROS production coupled with lower expression of NADPH oxidases. Thus, the ACE2/Ang-(1-7)/Mas receptor pathway plays a protective role in brain ischemic damage by counteracting the detrimental effects of Ang-II-induced ROS production.
    Neuroscience 05/2014; · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The angiotensin (Ang) converting enzyme 2 (ACE2)/Ang-(1-7)/Mas receptor pathway is an important component of the renin-angiotensin system and has been suggested to exert beneficial effects in ischemic stroke. This study explored whether the ACE2/Ang-(1-7)/Mas pathway has a protective effect on cerebral ischemic injury and whether this effect is affected by age. We used three-month and eight-month transgenic mice with neural over-expression of ACE2 (SA) and their age-matched nontransgenic (NT) controls. Neurological deficits and ischemic stroke volume were determined following middle cerebral artery occlusion (MCAO). In oxygen and glucose deprivation (OGD) experiments on brain slices, the effects of the Mas receptor agonist (Ang1-7) or antagonist (A779) on tissue swelling, Nox2/Nox4 expression reactive oxygen species (ROS) production and cell death were measured. (1) Middle cerebral artery occlusion -induced ischemic injury and neurological deficit were reduced in SA mice, especially in eight-month animals; (2) OGD-induced tissue swelling and cell death were decreased in SA mice with a greater reduction seen in eight-month mice; (3) Ang-(1-7) and A779 had opposite effects on OGD-induced responses, which correlated with changes in Nox2/Nox4 expression and ROS production. Angiotensin converting enzyme 2/Ang-(1-7)/Mas axis protects brain from ischemic injury via the Nox/ROS signaling pathway, with a greater effect in older animals.
    CNS Neuroscience & Therapeutics 03/2014; · 4.46 Impact Factor