Article

# Ordered packing of elastic wires in a sphere

Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), P.O. Box 45195-1159, Zanjan 45137-6673, Iran.

Physical Review E (Impact Factor: 2.31). 04/2012; DOI: 10.1103/PhysRevE.85.061108 - Citations (11)
- Cited In (0)

- [Show abstract] [Hide abstract]

**ABSTRACT:**We investigate the morphologies and maximum packing density of thin wires packed into spherical cavities. Using simulations and experiments, we find that ordered as well as disordered structures emerge, depending on the amount of internal torsion. We find that the highest packing densities are achieved in low torsion packings for large systems, but in high torsion packings for small systems. An analysis of both situations is given in terms of energetics and comparison is made to analytical models of DNA packing in viral capsids.Physical Review Letters 05/2011; 106(21):214102. · 7.73 Impact Factor -
##### Article: Granular packings: nonlinear elasticity, sound propagation, and collective relaxation dynamics.

[Show abstract] [Hide abstract]

**ABSTRACT:**Experiments on isotropic compression of a granular assembly of spheres show that the shear and bulk moduli vary with the confining pressure faster than the 1/3 power law predicted by Hertz-Mindlin effective medium theories of contact elasticity. Moreover, the ratio between the moduli is found to be larger than the prediction of the elastic theory by a constant value. The understanding of these discrepancies has been a long-standing question in the field of granular matter. Here we perform a test of the applicability of elasticity theory to granular materials. We perform sound propagation experiments, numerical simulations, and theoretical studies to understand the elastic response of a deforming granular assembly of soft spheres under isotropic loading. Our results for the behavior of the elastic moduli of the system agree very well with experiments. We show that the elasticity partially describes the experimental and numerical results for a system under compressional loads. However, it drastically fails for systems under shear perturbations, particularly for packings without tangential forces and friction. Our work indicates that a correct treatment should include not only the purely elastic response but also collective relaxation mechanisms related to structural disorder and nonaffine motion of grains.Physical Review E 01/2005; 70(6 Pt 1):061302. · 2.31 Impact Factor - [Show abstract] [Hide abstract]

**ABSTRACT:**Statistical properties of configurations of a metallic wire injected into a transparent planar two-dimensional cavity for three different injection geometries are investigated with the aid of high-resolution digital imaging techniques. The observed patterns of folds are studied as a function of the packing fraction of the wire within the cavity. In particular, we have examined the dependence of the mass of wire within a circle of radius R, as well as the dependence of the number of contacts wire-wire with the packing fraction. The distribution function n(s) of connected loops with internal area s formed as a consequence of the folded structure of the wire, and the average coordination number for these loops are also examined. Several scaling laws connecting variables of physical interest are obtained and discussed and a relation of this problem with disordered two-dimensional foam and random packing of disks is examined.Physical Review E 03/2003; 67(2 Pt 2):026110. · 2.31 Impact Factor

Data provided are for informational purposes only. Although carefully collected, accuracy cannot be guaranteed. The impact factor represents a rough estimation of the journal's impact factor and does not reflect the actual current impact factor. Publisher conditions are provided by RoMEO. Differing provisions from the publisher's actual policy or licence agreement may be applicable.