Dietary acrylamide intake and the risk of lymphatic malignancies: the Netherlands Cohort Study on diet and cancer.

Department of Epidemiology, School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre +, Maastricht, The Netherlands.
PLoS ONE (Impact Factor: 3.53). 06/2012; 7(6):e38016. DOI: 10.1371/journal.pone.0038016
Source: PubMed

ABSTRACT Acrylamide, a probable human carcinogen, is present in many everyday foods. Since the finding of its presence in foods in 2002, epidemiological studies have found some suggestive associations between dietary acrylamide exposure and the risk of various cancers. The aim of this prospective study is to investigate for the first time the association between dietary acrylamide intake and the risk of several histological subtypes of lymphatic malignancies.
The Netherlands Cohort Study on diet and cancer includes 120,852 men and women followed-up since September 1986. The number of person years at risk was estimated by using a random sample of participants from the total cohort that was chosen at baseline (n =5,000). Acrylamide intake was estimated from a food frequency questionnaire combined with acrylamide data for Dutch foods. Hazard ratios (HRs) were calculated for acrylamide intake as a continuous variable as well as in categories (quintiles and tertiles), for men and women separately and for never-smokers, using multivariable-adjusted Cox proportional hazards models.
After 16.3 years of follow-up, 1,233 microscopically confirmed cases of lymphatic malignancies were available for multivariable-adjusted analysis. For multiple myeloma and follicular lymphoma, HRs for men were 1.14 (95% CI: 1.01, 1.27) and 1.28 (95% CI: 1.03, 1.61) per 10 µg acrylamide/day increment, respectively. For never-smoking men, the HR for multiple myeloma was 1.98 (95% CI: 1.38, 2.85). No associations were observed for women.
We found indications that acrylamide may increase the risk of multiple myeloma and follicular lymphoma in men. This is the first epidemiological study to investigate the association between dietary acrylamide intake and the risk of lymphatic malignancies, and more research into these observed associations is warranted.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reaction products (adducts) of acrylamide with N termini of hemoglobin (Hb) are regularly observed in persons without known exposure. The average Hb adduct level measured in Swedish adults is preliminarily estimated to correspond to a daily intake approaching 100 microg of acrylamide. Because this uptake rate could be associated with a considerable cancer risk, it was considered important to identify its origin. It was hypothesized that acrylamide was formed at elevated temperatures in cooking, which was indicated in earlier studies of rats fed fried animal feed. This paper reports the analysis of acrylamide formed during heating of different human foodstuffs. Acrylamide levels in foodstuffs were analyzed by an improved gas chromatographic-mass spectrometric (GC-MS) method after bromination of acrylamide and by a new method for measurement of the underivatized acrylamide by liquid chromatography-mass spectrometry (LC-MS), using the MS/MS mode. For both methods the reproducibility, given as coefficient of variation, was approximately 5%, and the recovery close to 100%. For the GC-MS method the achieved detection level of acrylamide was 5 microg/kg and for the LC-MS/MS method, 10 microg/kg. The analytic values obtained with the LC-MS/MS method were 0.99 (0.95-1.04; 95% confidence interval) of the GC-MS values. The LC-MS/MS method is simpler and preferable for most routine analyses. Taken together, the various analytic data should be considered as proof of the identity of acrylamide. Studies with laboratory-heated foods revealed a temperature dependence of acrylamide formation. Moderate levels of acrylamide (5-50 microg/kg) were measured in heated protein-rich foods and higher contents (150-4000 microg/kg) in carbohydrate-rich foods, such as potato, beetroot, and also certain heated commercial potato products and crispbread. Acrylamide could not be detected in unheated control or boiled foods (<5 microg/kg). Consumption habits indicate that the acrylamide levels in the studied heated foods could lead to a daily intake of a few tens of micrograms.
    Journal of Agricultural and Food Chemistry 08/2002; 50(17):4998-5006. · 3.11 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reports of the presence of acrylamide in a range of fried and oven-cooked foods
    Nature 10/2002; 419(6906):448-449. · 42.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The fact that acrylamide, a proven rodent carcinogen, is present in significant quantities (up to several mg/kg of foodstuff) in a wide range of commonly consumed human foods is alarming. Attempts to determine a possible involvement of dietary acrylamide in human cancers have not been conclusive, however. To resolve the carcinogenicity of acrylamide to humans, the as yet unknown mechanism of action of acrylamide needs to be unraveled. The present review is a synopsis of research on the known and hypothetical modes of action of acrylamide of relevance for carcinogenesis. Both genotoxic and non-genotoxic modes of action of acrylamide are discussed with special emphasis on DNA adduct-targeted mutagenesis. Mechanistic data are presented from various experimental systems including in vitro experiments and in vivo rodent and human studies with special focus on mouse models. Human exposure data, including estimates of daily intake of dietary acrylamide in different populations and the corresponding cancer risk assessments are provided. The significant gaps in knowledge, which currently preclude a more definitive evaluation of human cancer risk due to exposure to dietary acrylamide, are highlighted. Future directions for research on acrylamide and cancer are outlined, and potential challenges are underscored.
    Carcinogenesis 04/2007; 28(3):519-28. · 5.27 Impact Factor

Full-text (2 Sources)

Available from
May 16, 2014