Critical Factors for Cardiac Reprogramming

Gladstone Institute of Cardiovascular Disease, 1650 Owens Street, San Francisco, CA 94158.
Circulation Research (Impact Factor: 11.09). 06/2012; 111(1):5-8. DOI: 10.1161/CIRCRESAHA.112.271452
Source: PubMed
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the mammalian heart fibroblasts have important functional roles in both healthy conditions and diseased states. During pathophysiological challenges, a closely related myofibroblast cell population emerges, and can have distinct, significant roles. Recently, it has been reported that human atrial myofibroblasts can express a Na(+) current, INa. Some of the biophysical properties and molecular features suggest that this INa is due to expression of Nav 1.5, the same Na(+) channel α subunit that generates the predominant INa in myocytes from adult mammalian heart. In principle, expression of Nav 1.5 could give rise to regenerative action potentials in the fibroblasts/myofibroblasts. This would suggest an active as opposed to passive role for fibroblasts/myofibroblasts in both the "trigger" and the "substrate" components of cardiac rhythm disturbances. Our goals in this preliminary study were: (i) to confirm and extend the electrophysiological characterization of INa in a human atrial fibroblast/myofibroblast cell population maintained in conventional 2-D tissue culture; (ii) to identify key molecular properties of the α and β subunits of these Na(+) channel(s); (iii) to define the biophysical and pharmacological properties of this INa; (iv) to integrate the available multi-disciplinary data, and attempt to illustrate its functional consequences, using a mathematical model in which the human atrial myocyte is coupled via connexins to fixed numbers of fibroblasts/myofibroblasts in a syncytial arrangement. Our experimental findings confirm that a significant fraction (approximately 40-50%) of these human atrial myofibroblasts can express INa. However, our data suggest that INa may be generated by a combination of Nav 1.9, Nav 1.2, and Nav 1.5. Our results, when complemented with mathematical modeling, provide a background for re-evaluating pharmacological management of supraventricular rhythm disorders, e.g., persistent atrial fibrillation.
    Frontiers in Physiology 08/2014; 5:275. DOI:10.3389/fphys.2014.00275
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblasts can be directly reprogrammed into cardiomyocyte-like cells (iCMs) by overexpression of cardiac transcription factors or microRNAs. However, induction of functional cardiomyocytes is inefficient, and molecular mechanisms of direct reprogramming remain undefined. Here, we demonstrate that addition of miR-133a (miR-133) to Gata4, Mef2c, and Tbx5 (GMT) or GMT plus Mesp1 and Myocd improved cardiac reprogramming from mouse or human fibroblasts by directly repressing Snai1, a master regulator of epithelial-to-mesenchymal transition. MiR-133 overexpression with GMT generated sevenfold more beating iCMs from mouse embryonic fibroblasts and shortened the duration to induce beating cells from 30 to 10 days, compared to GMT alone. Snai1 knockdown suppressed fibroblast genes, upregulated cardiac gene expression, and induced more contracting iCMs with GMT transduction, recapitulating the effects of miR-133 overexpression. In contrast, overexpression of Snai1 in GMT/miR-133-transduced cells maintained fibroblast signatures and inhibited generation of beating iCMs. MiR-133-mediated Snai1 repression was also critical for cardiac reprogramming in adult mouse and human cardiac fibroblasts. Thus, silencing fibroblast signatures, mediated by miR-133/Snai1, is a key molecular roadblock during cardiac reprogramming.
    The EMBO Journal 06/2014; DOI:10.15252/embj.201387605 · 10.75 Impact Factor
  • Circulation Research 01/2015; 116(2):216-8. DOI:10.1161/CIRCRESAHA.114.305696 · 11.09 Impact Factor