Article

Deformations within moving kinetochores reveal different sites of active and passive force generation.

Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
Science (Impact Factor: 31.2). 06/2012; 337(6092):355-8. DOI: 10.1126/science.1221886
Source: PubMed

ABSTRACT Kinetochores mediate chromosome segregation at mitosis. They are thought to contain both active, force-producing and passive, frictional interfaces with microtubules whose relative locations have been unclear. We inferred mechanical deformation within single kinetochores during metaphase oscillations by measuring average separations between fluorescently labeled kinetochore subunits in living cells undergoing mitosis. Inter-subunit distances were shorter in kinetochores moving toward poles than in those moving away. Inter-subunit separation decreased abruptly when kinetochores switched to poleward movement and decreased further when pulling force increased, suggesting that active force generation during poleward movement compresses kinetochores. The data revealed an active force-generating interface within kinetochores and a separate passive frictional interface located at least 20 nanometers away poleward. Together, these interfaces allow persistent attachment with intermittent active force generation.

0 Bookmarks
 · 
63 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sport fishermen keep tension on their lines to prevent hooked fish from releasing. A molecular version of this angler's trick, operating at kinetochores, ensures accuracy during mitosis: the mitotic spindle attaches randomly to chromosomes and then correctly bioriented attachments are stabilized due to the tension exerted on them by opposing microtubules. Incorrect attachments, which lack tension, are unstable and release quickly, allowing another chance for biorientation. Stabilization of molecular interactions by tension also occurs in other physiological contexts, such as cell adhesion, motility, hemostasis, and tissue morphogenesis. Here, we review models for the stabilization of kinetochore attachments with an eye toward emerging models for other force-activated systems. Although attention in the mitosis field has focused mainly on one kinase-based mechanism, multiple mechanisms may act together to stabilize properly bioriented kinetochores and some principles governing other tension-sensitive systems may also apply to kinetochores.
    Trends in Genetics 03/2014; · 9.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Aurora B kinase coordinates kinetochore-microtubule attachments with spindle checkpoint signaling on each mitotic chromosome. We find that EB1, a microtubule plus end-tracking protein, is required to enrich Aurora B at inner centromeres in a microtubule-dependent manner. This regulates phosphorylation of both kinetochore and chromatin substrates. EB1 regulates the histone phosphorylation marks (histone H2A phospho-Thr120 and histone H3 phospho-Thr3) that localize Aurora B. The chromosomal passenger complex containing Aurora B can be found on a subset of spindle microtubules that exist near prometaphase kinetochores, known as preformed K-fibers (kinetochore fibers). Our data suggest that EB1 enables the spindle microtubules to regulate the phosphorylation of kinetochores through recruitment of the Aurora B kinase.
    The Journal of Cell Biology 03/2014; · 10.82 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Faithful chromosome segregation is mandatory for cell and organismal viability. Kinetochores, large protein assemblies embedded in centromeric chromatin, establish a mechanical link between chromosomes and spindle microtubules. The KMN network, a conserved 10-subunit kinetochore complex, harbors the microtubule-binding interface. RWD domains in the KMN subunits Spc24 and Spc25 mediate kinetochore targeting of the microtubule-binding subunits by interacting with the Mis12 complex, a KMN subcomplex that tethers directly onto the underlying chromatin layer. Here, we show that Knl1, a KMN subunit involved in mitotic checkpoint signaling, also contains RWD domains that bind the Mis12 complex and that mediate kinetochore targeting of Knl1. By reporting the first 3D electron microscopy structure of the KMN network, we provide a comprehensive framework to interpret how interactions of RWD-containing proteins with the Mis12 complex shape KMN network topology. Our observations unveil a regular pattern in the construction of the outer kinetochore.
    Molecular cell 02/2014; · 14.61 Impact Factor

Full-text

View
0 Downloads
Available from