HSPBs: small proteins with big implications in human disease.

Department of Cell Biology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
The international journal of biochemistry & cell biology (Impact Factor: 4.89). 06/2012; 44(10):1706-10. DOI: 10.1016/j.biocel.2012.06.005
Source: PubMed

ABSTRACT Although initially somewhat ignored, recent studies have now clearly established that the diverse members of the human family of small HSPs (HSPB1-HSPB10) play crucial roles in a wide range of cell types to maintain the integrity and function of tissues, in particular that of nervous and muscular tissue. The 10 human HSPBs clearly have overlapping and non-overlapping functional characteristics. Their ability to self- and hetero-oligomerise provides the cells with a large array of potentially different, specific functions. Single HSPB members can have a multitude of functions (moonlighting) and act on different "clients", thus affecting a wide range of different processes or structures that can ultimately affect the rate of aging of tissues and entire organisms. This is underscored by the findings that some inherited diseases involve mutations in several HSPB members that cause premature (mostly muscle and neuronal) tissue degeneration. Inversely, cancer cell resistance to different anticancer therapies is associated with elevated expression of several HSPBs. Still, many unanswered questions exist about the precise functioning of HSPBs, their collaboration with other HSPB members as well as their functions within the entire cellular chaperone network. Also, better insight in the regulation of expression of the various members and how their function is modulated post-translationally is needed. Such may be crucially important to develop means to intervene with their function for therapeutic purposes, which would require functional down-regulation in cancer but up-regulation in, for instance, cardiac or degenerative neuro/neuromuscular diseases. This article is part of a Directed Issue entitled: Small HSPs in physiology and pathology.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Temperature-induced conformational changes of reduced and oxidized HspB1 crosslinked by disulfide bond between single Cys137 of neighboring monomers were analyzed by means of different techniques. Heating of reduced HspB1 was accompanied by irreversible changes of Trp fluorescence, whereas oxidized HspB1 underwent completely reversible changes of fluorescence. Increase of the temperature in the range of 20-70 °C was accompanied by self-association of both reduced and oxidized protein. Further increase of the temperature led to formation of heterogeneous mixture of large self-associated complexes of reduced HspB1 and to formation of smaller and less heterogeneous complexes of oxidized HspB1. Heat-induced changes of oligomeric state of reduced HspB1 were only partially reversible, whereas the corresponding changes of oligomeric state of oxidized HspB1 were almost completely reversible. Oxidation resulted in decrease of chaperone-like activity of HspB1. It is concluded that oxidative stress, inducing formation of disulfide bond, can affect stability and conformational mobility of human HspB1.
    Cell Stress and Chaperones 06/2014; 19(6). · 2.54 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are numerous human diseases that are associated with protein misfolding and the formation of toxic protein aggregates. Activating the heat shock response (HSR) - and thus generally restoring the disturbed protein homeostasis associated with such diseases - has often been suggested as a therapeutic strategy. However, most data on activating the HSR or its downstream targets in mouse models of diseases associated with aggregate formation have been rather disappointing. The human chaperonome consists of many more heat shock proteins (HSPs) that are not regulated by the HSR, however, and researchers are now focusing on these as potential therapeutic targets. In this Review, we summarize the existing literature on a set of aggregation diseases and propose that each of them can be characterized or 'barcoded' by a different set of HSPs that can rescue specific types of aggregation. Some of these 'non-canonical' HSPs have demonstrated effectiveness in vivo, in mouse models of protein-aggregation disease. Interestingly, several of these HSPs also cause diseases when mutated - so-called chaperonopathies - which are also discussed in this Review.
    Disease Models and Mechanisms 04/2014; 7(4):421-34. · 4.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The C289G mutation of the parkin E3-ubiquitin protein ligase (PARK2) is associated with autosomal recessive juvenile onset Parkinson's disease and was found to be associated with protein aggregation. Members of the human small heat shock proteins (HSPBs) have been implicated in protein degradation and prevention of protein aggregation. In this study, we show that of the ten HSPB members, individual overexpression of HSPB1, HSPB2, HSPB4 and HSPB7 suppresses PARK2 C289G-associated protein aggregation. Intriguingly, the protective actions of these HSPBs are not impaired upon inactivation of the ATP-dependent HSP70 chaperone machines. Depending on the HSPB member the protective actions involve either autophagic or proteasomal degradation pathways.
    Molecular and Cellular Biology 07/2014; · 5.04 Impact Factor