Article

Head and neck cancer stem cells: The side population

The Laryngoscope (Impact Factor: 1.98). 02/2011; 121(3):527 - 533. DOI: 10.1002/lary.21032

ABSTRACT Objectives/Hypothesis:The cancer stem cell (CSC) theory concludes that a subpopulation of cancer cells, the cancer stem cells, can self-renew and are responsible for tumor growth. Previous studies have identified cells able to efflux Hoechst 33342 dye as the side population (SP). SP cells and CSCs share many characteristics, suggesting the SP isolated from malignant tumors contains CSCs.Study Design:Experimental Study.Methods:The SP was isolated from a head and neck cancer cell line and analyzed for CSC-like characteristics.Results:The SP demonstrated the ability to reproduce both SP and non-side population (NSP) cells from as few as one cell. The SP had lower expression of active β-catenin and more resistance to 5-fluorouracil; the SP also demonstrated greater expression of Bmi-1 (4.3-fold) and ABCG2 (1.4-fold). SP cells were able to produce tumors in an animal model, whereas NSP were not. SPs were identified in two primary human tumors.Conclusions:This work adds to the evidence that the SP in head and neck cancer represents cells with CSC properties and provides a method by which CSCs can be isolated and studied. Laryngoscope, 2011

0 Bookmarks
 · 
66 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cancer stem cell (CSC) or Tumor initiating cell (TIC) play an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffness. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TICs enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.
    Experimental Cell Research. 01/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Oral mucosa is continuously exposed to environmental forces and has to be constantly renewed. Accordingly, the oral mucosa epithelium contains a large reservoir of epithelial stem cells necessary for tissue homeostasis. Despite considerable scientific advances in stem cell behavior in a number of tissues, fewer studies have been devoted to the stem cells in the oral epithelium. Most of oral mucosa stem cells studies are focused on identifying cancer stem cells (CSC) in oral squamous cell carcinomas (OSCCs) among other head and neck cancers. OSCCs are the most prevalent epithelial tumors of the head and neck region, marked by their aggressiveness and invasiveness. Due to their highly tumorigenic properties, it has been suggested that CSC may be the critical population of cancer cells in the development of OSCC metastasis. This review presents a brief overview of epithelium stem cells with implications in oral health, and the clinical implications of the CSC concept in OSCC metastatic dissemination.
    Experimental Cell Research 05/2014; · 3.56 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Although cells with tumorigenic/stem cell-like properties have been identified in many cancers, including oral squamous cell carcinoma (OSCC), their isolation and characterisation is still at early stages. The aim of this study is to characterise the electrophysiological properties of OSCC cells with different tumorigenic properties in order to establish if a correlation exists between tumorigenicity and cellular electrical characteristics. Materials and methods: Rapid adherence to collagen IV was used as a non-invasive, functional method to isolate subsets of cells with different tumorigenic abilities from one oral dysplastic and three OSCC-derived cell lines. The cell subsets identified and isolated using this method were further investigated using dielectrophoresis, a label-free method to determine their electrophysiological parameters. Cell membrane morphology was investigated using scanning electron microscopy (SEM) and modulated by use of 4-methylumbelliferone (4-MU). Results: Rapid adherent cells (RAC) to collagen IV, enriched for increased tumorigenic ability, had significantly higher effective membrane capacitance than middle (MAC) and late (LAC) adherent cells. SEM showed that, in contrast to MAC and LAC, RAC displayed a rough surface, extremely rich in cellular protrusions. Treatment with 4-MU dramatically altered RAC membrane morphology by causing loss of filopodia, and significantly decreased their membrane capacitance, indicating that the highest membrane capacitance found in RAC was due to their cell membrane morphology. Conclusion: This is the first study showing that OSCC cells with higher tumour formation ability exhibit higher effective membrane capacitance than cells that are less tumorigenic. OSSC cells with different tumorigenic ability possessed different electrophysiological properties mostly due to their differences in the cell membrane morphology. These results suggest that dielectrophoresis could potentially used in the future for reliable, label-free isolation of putative tumorigenic cells.
    Integrative Biology 03/2014; · 4.32 Impact Factor