Efficiency of anacardic acid as preservative in tomato products

Journal of Food Processing and Preservation (Impact Factor: 1.16). 07/2008; 32(4):600 - 609. DOI: 10.1111/j.1745-4549.2008.00201.x


Anacardic acid, 6[8′(Z), 11′(Z),14′-pentadecatrienyl] salicylic acid is the main active principle of Anacardium occidentale (Anacardiceae), the cashew. Cashew nut shell liquid (CNSL) contains approximately 70% anacardic acids, 18% cardol, 5% cardanol, and some other phenols and less polar substances. Because of the presence of anacardic acids, the CNSL exhibits potent antimicrobial activity. In view of this and the potent antimicrobial activity of anacardic acid observed in our previous study, the present study was planned to evaluate the anacardic acid isolated by us in our previous study as a food preservative. The effect of anacardic acid at 0.014% (w/w) was studied in tomato paste and tomato ketchup inoculated with 2 × 104 cfu/g of Staphylococcus aureus, Bacillus subtilis and Escherichia coli and stored at room temperature. Good activity was observed, as no viable growth after 28 days in both the products. Results showed that anacardic acid was active against both gram-positive and gram-negative bacteria. Results of the study indicated that anacardic acid can act as a potential preservative in tomato products and can be considered as an alternative natural preservative over the synthetic preservatives.
When safeties of synthetic preservatives are questioned, natural substances of plant origin may appeal to the public. The anacardic acid isolated form cashew nut shell is present in cashew nut, which is being consumed by a number of people as a food material. So it is relatively safe to use as an alternate to the existing synthetic preservatives.

37 Reads
  • Source
    • "Cashew apples (pseudofruit) and nuts can be consumed in natura and converted into various nutritional products (juice, tea, jam and beverages), (Kubo et al., 1993; Trevisan et al., 2006). Cashew nut shell liquid (CNSL) is used in industrial applications such as food preservatives, paints, cements and for gasoline stabilization; as such, it is an important commercial product in several tropical countries (Paramashivappa et al., 2001; Trevisan et al., 2006; Narasimhan et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Anacardium occidentale Linn. (cashew) is a Brazilian plant that is usually consumed in natura and is used in folk medicine. Anacardic acids (AAs) in the cashew nut shell liquid are biologically active as gastroprotectors, inhibitors of the activity of various deleterious enzymes, antitumor agents and antioxidants. Yet, there are no reports of toxicity testing to guarantee their use in vivo models. We evaluated AAs biosafety by measuring the acute, subacute and mutagenic effects of AAs administration in BALB/c mice. In acute tests, BALB/c mice received a single oral dose of 2000 mg/kg, whereas animals in subacute tests received 300, 600 and 1000 mg/kg for 30 days. Hematological, biochemical and histological analyses were performed in all animals. Mutagenicity was measured with the acute micronucleus test 24h after oral administration of 250 mg/kg AAs. Our results showed that the AAs acute minimum lethal dose in BALB/c mice is higher than 2000 mg/kg since this concentration did not produce any symptoms. In subacute tests, females which received the highest doses (600 or 1000 mg/kg) were more susceptible, which was seen by slightly decreased hematocrit and hemoglobin levels coupled with a moderate increase in urea. Anacardic acids did not produce any mutagenic effects. The data indicate that doses less than 300 mg/kg did not produce biochemical and hematological alterations in BALB/c mice. Additional studies must be conducted to investigate the pharmacological potential of this natural substance in order to ensure their safe use in vivo.
    Journal of ethnopharmacology 06/2011; 135(3):730-6. DOI:10.1016/j.jep.2011.04.002 · 3.00 Impact Factor
  • Source
    • "In continuation of our ongoing research work on development of preservatives, the present study was designed to evaluate the preservative effectiveness of caprylic acid derivatives against three representative bacterial strains and comparing it with the standard preservatives (methyl and propyl paraben) [2] [5]. "

    Scientia Pharmaceutica 01/2008; 76(3):533-539. DOI:10.3797/scipharm.0807-24
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effectiveness of grapefruit seed extract (GFSE) against three strains of Pseudomonas spp. (PSE 5 and PSE 8, two wild strains isolated from mozzarella cheese and identified as Pseudomonas fluorescens and Pseudomonas putida, respectively, and P. fluorescens DSMZ 50090) was studied. Biomass production and viable cell count were evaluated. Data of biomass production were modeled through the modified Gompertz equation; the lag phase was assumed as the “no spoiling time” (NST), whereas the parameter A (maximum amount of biomass produced) was used to quantify the inhibition exerted by the essential oil. Minimum inhibitory concentration (MIC) value was also evaluated. The addition of 50–100 ppm of GFSE resulted in a prolongation of NST, whereas MIC values were 150 ppm for the wild strains and 200 ppm for P. fluorescens DSMZ 50090, respectively. Pseudomonas spp. is a genus of great concern for the dairy industry, because of its spoiling ability both on milk and dairy products. The use of thermal processing is the main technology to inhibit pseudomonads; however, it could not assure product quality when a post-contamination or the storage at high temperatures occurs. Therefore, it is important to combine thermal processing with different means, able to preserve food quality. The use of natural compounds is considered as a promising approach and has been proposed since the 1990s for different microorganisms (Nychas 1995; Burt 2004); consumers, in fact, require friendly preservatives (i.e., not toxic, natural and environmentally safe compounds). In the light of this green consumerism, this paper could be considered as the first step to propose the use of GFSE against Pseudomonadas spp. of dairy origin.
    Journal of Food Processing and Preservation 11/2009; 34(3):495 - 507. DOI:10.1111/j.1745-4549.2008.00354.x · 1.16 Impact Factor
Show more