Article

In vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors

Faculty of Life Sciences, University of Manchester, United Kingdom
Glia (Impact Factor: 5.47). 11/2007; 55(14):1459 - 1468. DOI: 10.1002/glia.20562

ABSTRACT The peripheral benzodiazepine receptor (PBR) is expressed by microglial cells in many neuropathologies involving neuroinflammation. PK11195, the reference compound for PBR, is used for positron emission tomography (PET) imaging but has a limited capacity to quantify PBR expression. Here we describe the new PBR ligand CLINME as an alternative to PK11195. In vitro and in vivo imaging properties of [11C]CLINME were studied in a rat model of local acute neuroinflammation, and compared with the reference compound [11C]PK11195, using autoradiography and PET imaging. Immunohistochemistry study was performed to validate the imaging data. [11C]CLINME exhibited a higher contrast between the PBR-expressing lesion site and the intact side of the same rat brain than [11C]PK11195 (2.14 ± 0.09 vs. 1.62 ± 0.05 fold increase, respectively). The difference was due to a lower uptake for [11C]CLINME than for [11C]PK11195 in the non-inflammatory part of the brain in which PBR was not expressed, while uptake levels in the lesion were similar for both tracers. Tracer localization correlated well with that of activated microglial cells, demonstrated by immunohistochemistry and PBR expression detected by autoradiography. Modeling using the simplified tissue reference model showed that R1 was similar for both ligands (R1 ∼ 1), with [11C]CLINME exhibiting a higher binding potential than [11C]PK11195 (1.07 ± 0.30 vs. 0.66 ± 0.15). The results show that [11C]CLINME performs better than [11C]PK11195 in this model. Further studies of this new compound should be carried out to better define its capacity to overcome the limitations of [11C]PK11195 for PBR PET imaging. © 2007 Wiley-Liss, Inc.

0 Followers
 · 
189 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Evaluation of translocator protein (TSPO) overexpression is considered an attractive research tool for monitoring neuroinflammation in several neurological and psychiatric disorders. [11C]PK11195 PET imaging has been widely used for this purpose. However, it has a low sensitivity and a poor signal-to-noise ratio. For these reasons, [11C]CB184 was evaluated as a potentially more sensitive PET tracer. Methods A model of herpes simplex encephalitis (HSE) was induced in male Wistar rats. On day 6 or 7 after virus inoculation, [11C]CB184 PET scans were acquired followed by ex vivo evaluation of biodistribution. In addition, [11C]CB184 and [11C]PK11195 PET scans with arterial blood sampling were acquired to generate input for pharmacokinetic modelling. Differences between the saline-treated control group and the virus-treated HSE group were explored using volumes of interest and voxel-based analysis. Results The biodistribution study showed significantly higher [11C]CB184 uptake in the amygdala, olfactory bulb, medulla, pons and striatum (p p p r 2 = 0.71). Pretreatment with 5 mg/kg of unlabelled PK11195 effectively reduced (p 11C]CB184 uptake in the whole brain. Both, [11C]CB184 and [11C]PK11195, showed similar amounts of metabolites in plasma, and the binding potential (BPND) was not significantly different between the HSE rats and the control rats. In HSE rats BPND for [11C]CB184 was significantly higher (p 11C]PK11195 was only detected in the medulla. Conclusion [11C]CB184 showed nonspecific binding to healthy tissue comparable to that observed for [11C]PK11195, but it displayed significantly higher specific binding in those brain regions affected by the HSE. Our results suggest that [11C]CB184 PET is a good alternative for imaging of neuroinflammatory processes.
    European journal of nuclear medicine and molecular imaging 03/2015; DOI:10.1007/s00259-015-3021-x · 5.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 18 kDa translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor, is expressed in the injured brain. It has become known as an imaging marker of “neuroinflammation” indicating active disease, and is best interpreted as a nondiagnostic biomarker and disease staging tool that refers to histopathology rather than disease etiology. The therapeutic potential of TSPO as a drug target is mostly based on the understanding that it is an outer mitochondrial membrane protein required for the translocation of cholesterol, which thus regulates the rate of steroid synthesis. This pivotal role together with the evolutionary conservation of TSPO has underpinned the belief that any loss or mutation of TSPO should be associated with significant physiological deficits or be outright incompatible with life. However, against prediction, full Tspo knockout mice are viable and across their lifespan do not show the phenotype expected if cholesterol transport and steroid synthesis were significantly impaired. Thus, the “translocation” function of TSPO remains to be better substantiated. Here, we discuss the literature before and after the introduction of the new nomenclature for TSPO and review some of the newer findings. In light of the controversy surrounding the function of TSPO, we emphasize the continued importance of identifying compounds with confirmed selectivity and suggest that TSPO expression is analyzed within specific disease contexts rather than merely equated with the reified concept of “neuroinflammation.”
    Brain Pathology 11/2014; 24(6). DOI:10.1111/bpa.12196 · 4.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer's disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the "bench to bedside."
    01/2014; 5. DOI:10.4172/2155-9899.1000226

Full-text

Download
32 Downloads
Available from
Jul 14, 2014