Red blood cell to plasma ratios transfused during massive transfusion are associated with mortality in severe multiply injury: a retrospective analysis from the Trauma Registry of the Deutsche Gesellschaft fr Unfallchirurgie

Vox Sanguinis (Impact Factor: 3.3). 07/2008; 95(2):112 - 119. DOI: 10.1111/j.1423-0410.2008.01074.x

ABSTRACT Background To test whether an acute transfusion practice of packed red blood cells (pRBC) : fresh-frozen plasma (FFP) 1 : 1 would be associated with reduced mortality in acute bleeding multiply injury.Methods Retrospective analysis using the TR-DGU database (Trauma Registry of the Deutsche Gesellschaft für Unfallchirurgie 2002–2006) on primary admissions with substantial injury (Injury Severity Score > 16) and massive transfusion (> 10 pRBCs). Seven hundred thirteen patients were divided into three groups according to the pRBC : FFP ratio transfused, that is, (i) pRBC : FFP > 1·1; (ii) pRBC : FFP 0·9–1·1 (1 : 1); and (iii) pRBC : FFP < 0·9, and mortality rates were compared.Results Four hundred ninety-seven (69·7%) of patients were male, the mean age was 40·1 (± 18·3) years. Injury characteristics and pathophysiological state upon emergency room arrival were comparable between groups. Out of 713, 484 patients had undergone massive transfusion with pRBC : FFP > 1·1, 114 with pRBC : FFP 0·9–1·1 (1 : 1), and 115 with pRBC : FFP < 0·9 ratios. Acute mortality (< 6 h) rates for pRBC : FFP > 1·1, pRBC : FFP 0·9–1·1 (1 : 1), and pRBC : FFP < 0·9 ratios were 24·6, 9·6 and 3·5% (P < 0·0001), 24-h mortality rates were 32·6, 16·7 and 11·3% (P < 0·0001), and 30-day mortality rates were 45·5, 35·1 and 24·3% (P < 0·001). The frequency for septic complications and organ failure was higher in the pRBC : FFP 0·9–1·1 (1 : 1) group, ventilator days and length of stays for intensive care unit and overall in-hospital were highest in the pRBC : FFP < 0·9 ratio group (P < 0·0005).Conclusions An association between pRBC : FFP transfusion ratios and mortality to favour early aggressive FFP administration was observed. Further investigation is necessary prior to recommending routine 1 : 1 or more aggressive FFP use in exsanguinating patients.

Download full-text


Available from: Rolf Lefering, Oct 02, 2014
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Injury is rapidly becoming the leading cause of death worldwide, and uncontrolled hemorrhage is the leading cause of potentially preventable death. In addition to crystalloid and/or colloid based resuscitation, severely injured trauma patients are routinely transfused RBCs, plasma, platelets, and in some centers either cryoprecipitate or fibrinogen concentrates or whole blood. Optimal timing and quantity of these products in the treatment of hypothermic, coagulopathic and acidotic trauma patients is unclear. The immediate availability of these components is important, as most hemorrhagic deaths occur within the first 3-6h of patient arrival. While there are strongly held opinions and longstanding traditions in their use, there are little data within which to logically guide resuscitation therapy. Many current recommendations are based on euvolemic elective surgery patients and incorporate laboratory data parameters not widely available in the first few minutes after patient arrival. Finally, blood components themselves have evolved over the last 30 years, with great attention paid to product safety and inventory management, yet there are surprisingly limited clinical outcome data describing the long term effects of these changes, or how the components have improved clinical outcomes compared to whole blood therapy. When focused on survival of the rapidly bleeding trauma patient, it is unclear if current component therapy is equivalent to whole blood transfusion. In fact data from the current war in Iraq and Afghanistan suggest otherwise. All of these factors have contributed to the current situation, whereby blood component therapy is highly variable and not driven by long term patient outcomes. This review will address the issues raised above and describe recent trauma patient outcome data utilizing predetermined plasma:platelet:RBC transfusion ratios and an ongoing prospective observational trauma transfusion study.
    Biologicals 01/2010; 38(1):72-7. DOI:10.1016/j.biologicals.2009.10.007 · 1.41 Impact Factor
  • Annales francaises d'anesthesie et de reanimation 07/2009; 28(7-8):707-9. DOI:10.1016/j.annfar.2009.05.011 · 0.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the severity and complexity of injuries, survival rates among combat casualties are equal to or better than those from civilian trauma. This article summarizes the evidence regarding innovations from the battlefield that contribute to these extraordinary survival rates, including preventing hemorrhage with the use of tourniquets and hemostatic dressings, damage control resuscitation, and the rapid evacuation of casualties via MEDEVAC and the US Air Force Critical Care Air Transport Teams. Care in the air for critically injured casualties with pulmonary injuries and traumatic brain injury is discussed to demonstrate the unique considerations required to ensure safe en route care. Innovations being studied to decrease sequelae associated with complex orthopedic and extremity trauma are also presented. The role and contributions of the Joint Combat Casualty Research Team and the Joint Theater Trauma System are also discussed.
    AACN Advanced Critical Care 01/2010; 21(3):260-76; quiz 278. DOI:10.1097/NCI.0b013e3181e67385