Angiotensin‐converting enzyme I inhibitory activity of phlorotannins from Ecklonia stolonifera

Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737, South Korea
Fisheries Science (Impact Factor: 0.9). 11/2006; 72(6):1292 - 1299. DOI: 10.1111/j.1444-2906.2006.01288.x

ABSTRACT As part of our study of the isolation of antihypertensive agents derived from natural marine products, the bioactivity of 10 edible Korean seaweeds were screened by angiotensin converting enzyme (ACE) inhibitory and peroxynitrite assays. Among the crude extracts of selected seaweeds, including five Phaeophyta (Ecklonia stolonifera, E. cava, Pelvetia siliquosa, Hizikia fusiforme, and Undaria pinnatifida), four Rhodophyta (Gigartina tenella, Gelidium amansii, Chondria crassicaulis, and Porphyra tenera) and one Chlorophyta (Capsosiphon fulvescens), the ethanol extracts of E. stolonifera, E. cava, P. siliquosa, U. pinnatifida, and G. tenella exhibited significant inhibitory properties against ACE at more than 50% inhibition at a concentration of 163.93 µg/mL. Phloroglucinol 1, eckstolonol 2, eckol 3, phlorofucofuroeckol A 4, and dieckol 5 had been isolated previously, and triphlorethol-A 6 and fucosterol 7 were isolated for the first time from E. stolonifera. Also, the ACE inhibitory and peroxynitrite scavenging properties of phlorotannins 1–6 were evaluated, along with fucosterol 7 obtained from E. stolonifera. Among profound peroxynitrite scavenging compounds 1–6, phlorotannins 3, 4 and 5 were also determined to manifest marked inhibitory activity against ACE, with 50% inhibition concentration (IC50) values of 70.82 ± 0.25, 12.74 ± 0.15, and 34.25 ± 3.56 µM, respectively.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Edible seaweeds were collected from Indonesia, a tropical country that does not show seasonal varia-tions in temperature, to evaluate their health-related activities. Ethanol and acetone extracts were prepared from -green and -brown algae. The ethanol and acetone extracts from Padina australis showed the strongest DPPH radical scavenging activity. These extracts also had the highest concentrations of total phenol and flavonoid. Both the ethanol and acetone extracts of the 0 Indonesian seaweeds decreased Caco-, cell viability when such cells were treated with 0** mM hydrogen peroxide. However, when Caco-, cells were treated with 1** or 2** mM hydrogen peroxide, the ethanol and acetone extracts from P. australis increased cell viability significantly more than those from the other seaweeds. This study indicates that organic extracts of seaweed have useful health-related functions.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Seaweeds are one of the most widely studied natural resources for their biological activities. Novel seaweed compounds with unique chemical structures have been reported for their pharmacological properties. The urge to search for novel insecticidal compound with a new mode of action for development of botanical insecticides supports the relevant scientific research on discovering the bioactive compounds in seaweeds. The mosquitocidal potential of seaweed extracts and their isolated compounds are documented in this review paper, along with the discussion on bioactivities of the major components of seaweeds such as polysaccharides, phenolics, proteins, terpenes, lipids, and halogenated compounds. The effects of seaweed extracts and compounds toward different life stages of mosquito (egg, larva, pupa, and adult), its growth, development, and reproduction are elaborated. The structure-activity relationships of mosquitocidal compounds are discussed to extrapolate the possible chemical characteristics of seaweed compounds responsible for insecticidal properties. Furthermore, the possible target sites and mode of actions of the mosquitocidal seaweed compounds are included in this paper. The potential synergistic effects between seaweeds and commercial insecticides as well as the toxic effects of seaweed extracts and compounds toward other insects and non-target organisms in the same habitat are also described. On top of that, various factors that influence the mosquitocidal potential of seaweeds, such as abiotic and biotic variables, sample preparation, test procedures, and considerations for a precise experimental design are discussed. The potential of active seaweed extracts and compounds in the development of effective bioinsecticide are also discussed.
    Parasitology Research 08/2014; · 2.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To assess the feasibility of phlorotannins from Eisenia bicyclis as cancer chemopreventative agents, we tested whether they induced quinone reductase (QR) in Hepa1c1c7 cells. The ethyl acetate (EtOAc) soluble fraction obtained from E. bicyclis exhibited a QR induction activity in Hepa1c1c7 cells. Successive column chromatography of the active EtOAc fraction resulted in the isolation of four phlorotannins. Their structures were elucidated using one- and two-dimensional nuclear magnetic resonance spectroscopic techniques and characterized as phloroglucinol (1), dioxinodehydroeckol (2), dieckol (3), and fucofuroeckol-A (4). Among these compounds, fucofuroeckol-A (4) showed moderate QR induction activity, and dioxinodehydroeckol (2) exhibited potent QR induction potency with fold induction at a concentration of compared to the dimethyl sulfoxide solvent-treated control cells. However, phloroglucinol (1) and dieckol (3) exerted no detectable QR induction activity in Hepa1c1c7 cells. These results suggest that dioxinodehydroeckol could serve as a useful cancer chemopreventive chemical.
    Fisheries and aquatic sciences. 03/2013; 16(1).