Article

Depression gets old fast: do stress and depression accelerate cell aging?

Depression and Anxiety (Impact Factor: 4.29). 04/2010; 27(4):327 - 338. DOI: 10.1002/da.20686

ABSTRACT Depression has been likened to a state of “accelerated aging,” and depressed individuals have a higher incidence of various diseases of aging, such as cardiovascular and cerebrovascular diseases, metabolic syndrome, and dementia. Chronic exposure to certain interlinked biochemical pathways that mediate stress-related depression may contribute to “accelerated aging,” cell damage, and certain comorbid medical illnesses. Biochemical mediators explored in this theoretical review include the hypothalamic–pituitary–adrenal axis (e.g., hyper- or hypoactivation of glucocorticoid receptors), neurosteroids, such as dehydroepiandrosterone and allopregnanolone, brain-derived neurotrophic factor, excitotoxicity, oxidative and inflammatory stress, and disturbances of the telomere/telomerase maintenance system. A better appreciation of the role of these mediators in depressive illness could lead to refined models of depression, to a re-conceptualization of depression as a whole body disease rather than just a “mental illness,” and to the rational development of new classes of medications to treat depression and its related medical comorbidities. Depression and Anxiety, 2010. © 2010 Wiley-Liss, Inc.

2 Bookmarks
 · 
84 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Single nucleotide polymorphisms (SNPs) in the FK506 binding protein 5 (FKBP5) gene combine with traumatic events to increase risk for post-traumatic stress and major depressive disorders (PTSD and MDD). These SNPs increase FKBP51 protein expression through a mechanism involving demethylation of the gene and altered glucocorticoid signaling. Aged animals also display elevated FKBP51 levels, which contribute to impaired resiliency to depressive-like behaviors through impaired glucocorticoid signaling, a phenotype that is abrogated in FKBP5-/- mice. But the age of onset and progressive stability of these phenotypes remain unknown. Moreover, it is unclear how FKBP5 deletion affects other glucocorticoid-dependent processes or if age-associated increases in FKBP51 expression are mediated through a similar epigenetic process caused by SNPs in the FKBP5 gene. Here, we show that FKBP51-mediated impairment in stress resiliency and glucocorticoid signaling occurs by 10 months of age and this increased over their lifespan. Surprisingly, despite these progressive changes in glucocorticoid responsiveness, FKBP5-/- mice displayed normal longevity, glucose tolerance, blood composition and cytokine profiles across lifespan, phenotypes normally associated with glucocorticoid signaling. We also found that methylation of Fkbp5 decreased with age in mice, a process that likely explains the age-associated increases in FKBP51 levels. Thus, epigenetic upregulation of FKBP51 with age can selectively impair psychological stress-resiliency, but does not affect other glucocorticoid-mediated physiological processes. This makes FKBP51 a unique and attractive therapeutic target to treat PTSD and MDD. In addition, aged wild-type mice may be a useful model for investigating the mechanisms of FKBP5 SNPs associated with these disorders.
    PLoS ONE 09/2014; 9(9):e107241. DOI:10.1371/journal.pone.0107241 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cycloastragenol (CAG) is an aglycone of astragaloside IV. It was first identified when screening Astragalus membranaceus extracts for active ingredients with antiaging properties. The present study demonstrates that CAG stimulates telomerase activity and cell proliferation in human neonatal keratinocytes. In particular, CAG promotes scratch wound closure of human neonatal keratinocyte monolayers in vitro. The distinct telomerase-activating property of CAG prompted evaluation of its potential application in the treatment of neurological disorders. Accordingly, CAG induced telomerase activity and cAMP response element binding (CREB) activation in PC12 cells and primary neurons. Blockade of CREB expression in neuronal cells by RNA interference reduced basal telomerase activity, and CAG was no longer efficacious in increasing telomerase activity. CAG treatment not only induced the expression of bcl2, a CREB-regulated gene, but also the expression of telomerase reverse transcriptase in primary cortical neurons. Interestingly, oral administration of CAG for 7 days attenuated depression-like behavior in experimental mice. In conclusion, CAG stimulates telomerase activity in human neonatal keratinocytes and rat neuronal cells, and induces CREB activation followed by tert and bcl2 expression. Furthermore, CAG may have a novel therapeutic role in depression. © 2014 S. Karger AG, Basel.
    Neurosignals 07/2014; 22(1):52-63. DOI:10.1159/000365290 · 4.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Emerging evidence suggests the significant role of inflammation and oxidative stress as main contributors to the neuroprogression that is observed in major depressive disorder (MDD), where patients show increased inflammatory and oxidative stress biomarkers. The process of neuroprogression includes stage-related neurodegeneration, cell death, reduced neurogenesis, reduced neuronal plasticity and increased autoimmune responses. Oxidative stress is a consequence of the biological imbalance between Reactive Oxygen Species (ROS) and antioxidants, leading to the alteration of biomolecules and the loss of control of the intracellular redox-related signaling pathways. ROS serve as crucial secondary messengers in signal transduction and significantly affect inflammatory pathways by activating NF-κB and MAPK family stress kinases. When present in excess, ROS inflict damage, affecting cellular constituents with the formation of pro-inflammatory molecules, such as malondialdehyde, 4-Hydroxynonenal, neoepitopes and damage-associated molecular patterns promoting immune response, and ultimately leading to cell death. The failure of cells to adapt to the changes in redox homeostasis and the subsequent cell death, together with the damage caused by inflammatory mediators, have been considered as major causes of neuroprogression and hence MDD. Both an activated immune-inflammatory system and increased oxidative stress act synergistically, complicating our understanding of the pathogenesis of depression. The cascade of antioxidative and inflammatory events is orchestrated by several transcription factors, with Nrf2 and NF-κB having particular relevance to MDD. This review focuses on potential molecular mechanisms through which impaired redox homeostasis and neuroinflammation can affect the neuronal environment and contribute to depressionThis article is protected by copyright. All rights reserved.
    Immunology 01/2015; DOI:10.1111/imm.12443 · 3.74 Impact Factor

Preview

Download
1 Download
Available from