Computation of Likelihood Ratios in Fingerprint Identification for Configurations of Any Number of Minutiæ

University of Lausanne, Lausanne, Vaud, Switzerland
Journal of Forensic Sciences (Impact Factor: 1.31). 12/2006; 52(1):54 - 64. DOI: 10.1111/j.1556-4029.2006.00327.x

ABSTRACT Recent court challenges have highlighted the need for statistical research on fingerprint identification. This paper proposes a model for computing likelihood ratios (LRs) to assess the evidential value of comparisons with any number of minutiæ. The model considers minutiae type, direction and relative spatial relationships. It expands on previous work on three minutiae by adopting a spatial modeling using radial triangulation and a probabilistic distortion model for assessing the numerator of the LR. The model has been tested on a sample of 686 ulnar loops and 204 arches. Features vectors used for statistical analysis have been obtained following a preprocessing step based on Gabor filtering and image processing to extract minutiae data. The metric used to assess similarity between two feature vectors is based on an Euclidean distance measure. Tippett plots and rates of misleading evidence have been used as performance indicators of the model. The model has shown encouraging behavior with low rates of misleading evidence and a LR power of the model increasing significantly with the number of minutiæ. The LRs that it provides are highly indicative of identity of source on a significant proportion of cases, even when considering configurations with few minutiæ. In contrast with previous research, the model, in addition to minutia type and direction, incorporates spatial relationships of minutiæ without introducing probabilistic independence assumptions. The model also accounts for finger distortion.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Latent print examiners use their expertise to determine whether the information present in a comparison of two fingerprints (or palmprints) is sufficient to conclude that the prints were from the same source (individualization). When fingerprint evidence is presented in court, it is the examiner's determination-not an objective metric-that is presented. This study was designed to ascertain the factors that explain examiners' determinations of sufficiency for individualization. Volunteer latent print examiners (n = 170) were each assigned 22 pairs of latent and exemplar prints for examination, and annotated features, correspondence of features, and clarity. The 320 image pairs were selected specifically to control clarity and quantity of features. The predominant factor differentiating annotations associated with individualization and inconclusive determinations is the count of corresponding minutiae; other factors such as clarity provided minimal additional discriminative value. Examiners' counts of corresponding minutiae were strongly associated with their own determinations; however, due to substantial variation of both annotations and determinations among examiners, one examiner's annotation and determination on a given comparison is a relatively weak predictor of whether another examiner would individualize. The extensive variability in annotations also means that we must treat any individual examiner's minutia counts as interpretations of the (unknowable) information content of the prints: saying "the prints had N corresponding minutiae marked" is not the same as "the prints had N corresponding minutiae." More consistency in annotations, which could be achieved through standardization and training, should lead to process improvements and provide greater transparency in casework.
    PLoS ONE 11/2014; 9(11):e110179. DOI:10.1371/journal.pone.0110179 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents a statistical model for the quantification of the weight of fingerprint evidence. Contrarily to previous models (generative and score-based models), our model proposes to estimate the probability distributions of spatial relationships, directions and types of minutiae observed on fingerprints for any given fingermark. Our model is relying on an AFIS algorithm provided by 3 M Cogent and on a dataset of more than 4,000,000 fingerprints to represent a sample from a relevant population of potential sources. The performance of our model was tested using several hundreds of minutiae configurations observed on a set of 565 fingermarks. In particular, the effects of various sub-populations of fingers (i.e. finger number, finger general pattern) on the expected evidential value of our test configurations were investigated.
    Forensic Science International 01/2015; 248C. DOI:10.1016/j.forsciint.2015.01.007 · 2.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development of forensic intelligence relies on the expression of suitable models that better represent the contribution of forensic intelligence in relation to the criminal justice system, policing and security. Such models assist in comparing and evaluating methods and new technologies, provide transparency and foster the development of new applications. Interestingly, strong similarities between two separate projects focusing on specific forensic science areas were recently observed. These observations have led to the induction of a general model (Part I) that could guide the use of any forensic science case data in an intelligence perspective. The present article builds upon this general approach by focusing on decisional and organisational issues. The article investigates the comparison process and evaluation system that lay at the heart of the forensic intelligence framework, advocating scientific decision criteria and a structured but flexible and dynamic architecture. These building blocks are crucial and clearly lay within the expertise of forensic scientists. However, it is only part of the problem. Forensic intelligence includes other blocks with their respective interactions, decision points and tensions (e.g. regarding how to guide detection and how to integrate forensic information with other information). Formalising these blocks identifies many questions and potential answers. Addressing these questions is essential for the progress of the discipline. Such a process requires clarifying the role and place of the forensic scientist within the whole process and their relationship to other stakeholders. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Forensic Science International 02/2015; DOI:10.1016/j.forsciint.2015.02.021 · 2.12 Impact Factor