Transforming growth factor‐β1 regulates platelet‐derived growth factor receptor β subunit in human liver fat‐storing cells

Hepatology (Impact Factor: 11.19). 01/1995; 21(1):232 - 239. DOI: 10.1002/hep.1840210136

ABSTRACT Activated liver fat-storing cells (FSC) are known to play a key role in the development of liver fibrosis. An important element in FSC activation process is the increased expression of receptors for platelet-derived growth factor (PDGF), a potent mitogen for FSC. The aim of the present study was to evaluate the expression PDGF-receptor alpha and beta subunits in cultured human FSC and their regulation induced by transforming growth factor-β1 (TGF-β), a cytokine potentially involved in an autocrine loop. TGF-β induced a significant increase of the mitogenic effect of PDGF-BB and did not affect the mitogenicity of PDGF-AA and PDGF-AB, suggesting a selective action of the PDGF-receptor-β subunit. This hypothesis was confirmed by regulation experiments showing selective and time-dependent upregulation of the messenger (m)RNA encoding for the PDGF-receptor-β subunit and the relative protein induced by TGF-β. In addition, binding studies showed a parallel increase of PDGF-BB binding sites after incubation of human FSC with TGF-β. These studies provide evidence for an additional mechanism leading to the perpetuation of FSC activation and proliferation and contribute to a better understanding of the role of TGF-β and PDGF in the development of liver fibrosis. (Hepatology 1995;21:232–239).

  • [Show abstract] [Hide abstract]
    ABSTRACT: Among early-passage, near-diploid gliomas in vitro, transforming growth factor type beta (TGF beta) has been previously shown to be an autocrine growth inhibitor. In contrast, hyperdiploid (> or = 57 chromosomes/metaphase) glioblastoma multiforme (HD-GM) cultures were autocrinely stimulated by the TGF beta. The mechanism of this 'conversion' from autocrine inhibitor to mitogen is not understood; previous studies have suggested that platelet-derived growth factor (PDGF) might be modulated by TGF beta. The similar expression of TGF beta types 1-3, PDGF-AA; -BB, as well as the PDGF receptor alpha and beta subunits (a/beta PDGFR) between biopsies of the HD-GM and near-diploid, TGF beta-inhibited glioblastomas (GM) by immunohistochemistry did not explain the discrepancy in their regulatory responses. Flow cytometry demonstrated that TGF beta's mitogenic effect was selective for the aneuploid subpopulations of two of three selected HD-GM cultures, while the diploid cells were inhibited. Among the HD-GM, TGF beta 1 induced the RNA of PDGF-A, c-sis and TGF beta 1. The amount of PDGF-AA secreted following TGF beta treatment was sufficient to stimulate the proliferation of a HD-GM culture. Antibodies against PDGF-AA, -BB, -AB, alpha PDGFR and/or beta PDGFR subunits effectively neutralized TGF beta's induction of DNA synthesis among the HD-GM cell lines, indicating that PDGF served as the principal mediator of TGF beta's growth stimulatory effect. By comparison, TGF beta induced only the RNA of PDGF-A and TGF beta 1 among the near-diploid GM, c-sis was not expressed at all. However, the amount of PDGF-A which was secreted in response to TGF beta 1 was insufficient to prevent TGF beta's arrest of the near-diploid cultures in G1 phase. Thus, the emergence of hyperdiploidy was associated with qualitative and quantitative differences in TGF beta's modulation of PDGF-A and c-sis, which provided a mechanism by which the aneuploid glioma cells might achieve 'clonal dominance'. We hypothesize that TGF beta may serve as an autocrine promoter of GM progression by providing a selective advantage to the hyperdiploid subpopulation through the loss of a tumor suppressor gene which mediates TGF beta's inhibitory effect.
    Journal of Neuro-Oncology 02/1997; 31(3):233-54. DOI:10.1023/A:1005767616500 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A component of fungus Thielavia minor, OPC-15161, has been shown to inhibit the proliferation and extracellular matrix production of extracellular matrix-producing mesangial cells in the kidney in vivo. In this study, we examined the effects of OPC-15161 on the proliferation and extracellular matrix production of rat cultured hepatic stellate cells (HSCs). To determine the effect of OPC-15161 on proliferation of HSCs, the cell number and the uptake of [3H]thymidine were investigated in the presence and absence of interleukin-1beta (IL-1beta). IL-1beta significantly increased the uptake of [3H]thymidine in the HSCs, and the addition of OPC-15161 inhibited the uptake in a dose-dependent manner. The cell number of HSCs was also increased by IL-1beta, which was inhibited by OPC-15161. Production of extracellular matrix by OPC-15161 was studied by the production of [3H]-hydroxyproline in the presence and absence of transforming growth factor-beta1 (TGF-beta1). TGF-beta1 significantly increased the production of [3H]-hydroxyproline in the cells, whereas the addition of OPC-15161 inhibited this effect dose dependently. We also investigated the effects of OPC-15161 on Ca2+ mobilization and measured D-myo-inositol 1,4,5-triphosphate (IP3) in the HSCs. IL-1beta induced the increase of intracellular Ca2+ and IP3 concentrations in the HSCs, which were decreased by OPC-15161. Based on these results, we conclude that OPC-1 5161 inhibited the proliferation and production of hydroxyproline in cultured rat HSCs, and thus, it may have a role in prevention of liver fibrosis in vivo.
    Journal of Cellular Physiology 03/1998; 174(3):398-406. DOI:10.1002/(SICI)1097-4652(199803)174:3<398::AID-JCP14>3.0.CO;2-5 · 3.87 Impact Factor
  • Clinical Neurophysiology 06/2011; 122. DOI:10.1016/S1388-2457(11)60461-6 · 2.98 Impact Factor

Similar Publications