Differential signalling of the chemokine receptor CXCR4 by stromal cell‐derived factor 1 and the HIV glycoprotein in rat neurons and astrocytes

European Journal of Neuroscience (Impact Factor: 3.67). 12/1999; 12(1):117 - 125. DOI: 10.1046/j.1460-9568.2000.00894.x

ABSTRACT CXCR4 is the Gi protein-linked seven-transmembrane receptor for the alpha chemokine stromal cell-derived factor 1 (SDF-1), a chemoattractant for lymphocytes. This receptor is highly conserved between human and rodent. CXCR4 is also a coreceptor for entry of human immunodeficiency virus (HIV) in T cells and is expressed in the CNS. To investigate how these CXCR4 ligands influence CNS development and/or function, we have examined the expression and signalling of this chemokine receptor in rat neurons and astrocytes in vitro. CXCR4 transcripts and protein are synthesized by both cell types and in E15 brain neuronal progenitors. In these progenitors, SDF-1, but not gp120 (the HIV glycoprotein), induced activation of extracellular signal regulated kinases (ERKs) 1/2 and a dose-dependent chemotactic response. This chemotaxis was inhibited by Pertussis toxin, which uncouples Gi proteins and the bicyclam AMD3100, a highly selective CXCR4 antagonist, as well as by an inhibitor of the MAP kinase pathway. In differentiated neurons, both SDF-1 and the glycoprotein of HIV, gp120, triggered activation of ERKs with similar kinetics. These effects were significantly inhibited by Pertussis toxin and the CXCR4 antagonist. Rat astrocytes also responded to SDF-1 signalling by phosphorylation of ERKs but, in contrast to cortical neurons, no kinase activation was induced by gp120. Thus neurons and astrocytes can respond differently to signalling by SDF-1 and/or gp120. As SDF-1 triggers directed migration of neuronal progenitors, this alpha chemokine may play a role in cortex development. In differentiated neurons, both natural and viral ligands of CXCR4 activate ERKs and may therefore influence neuronal function.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Surface expression of stromal cell-derived factor-1 (SDF-1) on platelets is enhanced during ischaemic events and might play an important role in peripheral homing and myocardial repair. As SDF-1 effects are mediated through CXCR4/CXCR7, we investigated platelet expression of SDF-1/CXCR4/CXCR7 in patients with coronary artery disease (CAD). Expression of SDF-1, CXCR4, and CXCR7 in platelets was investigated by western blot analysis, immunofluorescence confocal microscopy, and flow cytometry among healthy subjects and patients with acute coronary syndrome (ACS) and stable CAD. In a cohort study, platelet surface expression of CXCR4, CXCR7, and SDF-1 was measured in 215 patients with symptomatic CAD (stable CAD = 112, ACS = 103) at the time of percutaneous coronary intervention. Course of left ventricular ejection fraction (LVEF) was followed up during intrahospital stay and at 3 months. Both CXCR4 and CXCR7 are surface expressed on human platelets and to a higher degree in CAD patients when compared with healthy controls. Platelet surface expression of CXCR7 but not CXCR4 was enhanced in patients with ACS when compared with patients with stable CAD (mean fluorescence intensity 17.8 vs. 15.3, P = 0.004 and 29.0 vs. 26.3, P = 0.122, respectively). CXCR4 and CXCR7 significantly correlated with their ligand SDF-1 on platelets (ρ = 0.273, P < 0.001 and ρ = 0.454, P < 0.001, respectively). Additionally, high CXCR7 expression above the median correlated with the absolute improvement of LVEF% after 5 days and 3 months (46.2, 49.8, 53.7; P = 0.003). These findings indicate that platelet surface expression of CXCR4 and CXCR7 might differentially contribute to SDF-1-mediated effects on regenerative mechanisms following ACS. Studies are warranted to further evaluate the regulatory mechanisms of CXCR4/-7 expression and its prognostic impact on CAD.
    European Heart Journal 10/2013; 35(6). DOI:10.1093/eurheartj/eht448 · 14.72 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CXCL12/CXCR4 signaling has been reported to regulate three essential processes for the establishment of neural networks in different neuronal systems: neuronal migration, cell positioning and axon wiring. However, it is not known whether it regulates the development of A9-A10 tyrosine hydroxylase positive (TH(+)) midbrain dopaminergic (mDA) neurons. We report here that Cxcl12 is expressed in the meninges surrounding the ventral midbrain (VM), whereas CXCR4 is present in NURR1(+) mDA precursors and mDA neurons from E10.5 to E14.5. CXCR4 is activated in NURR1(+) cells as they migrate towards the meninges. Accordingly, VM meninges and CXCL12 promoted migration and neuritogenesis of TH(+) cells in VM explants in a CXCR4-dependent manner. Moreover, in vivo electroporation of Cxcl12 at E12.5 in the basal plate resulted in lateral migration, whereas expression in the midline resulted in retention of TH(+) cells in the IZ close to the midline. Analysis of Cxcr4(-/-) mice revealed the presence of VM TH(+) cells with disoriented processes in the intermediate zone (IZ) at E11.5 and marginal zone (MZ) at E14. Consistently, pharmacological blockade of CXCR4 or genetic deletion of Cxcr4 resulted in an accumulation of TH(+) cells in the lateral aspect of the IZ at E14, indicating that CXCR4 is required for the radial migration of mDA neurons in vivo. Altogether, our findings demonstrate that CXCL12/CXCR4 regulates the migration and orientation of processes in A9-A10 mDA neurons.
    Development 10/2013; 140(22). DOI:10.1242/dev.098145 · 6.27 Impact Factor