Article

Comparison of Weight Gain and Energy Intake After Subthalamic Versus Pallidal Stimulation in Parkinson's Disease

Movement Disorders (Impact Factor: 5.63). 10/2009; 24(14):2149 - 2155. DOI: 10.1002/mds.22765

ABSTRACT To compare body mass index (BMI) and daily energy intake (DEI) after subthalamic versus pallidal deep brain stimulation (DBS). Weight gain following DBS in Parkinson's disease patients remains largely unexplained and no comparison of subthalamic and pallidal (GPi) stimulation has yet been performed. BMI and DEI, dopaminergic drug administration and motor scores were recorded in 46 patients with PD before STN (n = 32) or GPi (n = 14) DBS and 3 and 6 months after. At M6, BMI had increased by an average of 8.4% in the STN group and 3.2% in the GPi group. BMI increased in 28 STN and 9 GPi patients. This increase was significantly higher in the STN group (P < 0.048) and the difference remained significant after adjustment for reduced dopaminergic medication; 28.6% of GPi patients were overweight at 6 months (14.3% preoperatively) versus 37.5% of STN patients (21.9% preoperatively). Changes in BMI were negatively correlated with changes in dyskinesia in the GPi–DBS group. Food intake did not change in the two groups, either quantitatively or qualitatively. Frequent weight gain, inadequately explained by motor improvement or reduced dopaminergic drug dosage, occurred in subthalamic DBS patients. The difference between groups suggests additional factors in the STN group, such as homeostatic control center involvement. © 2009 Movement Disorder Society

Download full-text

Full-text

Available from: Paul Sauleau, Jun 20, 2015
0 Followers
 · 
110 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.
    Frontiers in Neuroscience 05/2014; 8:95. DOI:10.3389/fnins.2014.00095
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is established that deep brain stimulation of the subthalamic nucleus improves motor function in advanced Parkinson's disease, but its effects on autonomic function remain to be elucidated. The present study was undertaken to investigate the effects of subthalamic deep brain stimulation on gastric emptying. A total of 16 patients with Parkinson's disease who underwent bilateral subthalamic deep brain stimulation were enrolled. Gastric emptying was expressed as the peak time of (13)CO(2) excretion (T(max)) in the (13)C-acetate breath test and was assessed in patients with and without administration of 100-150 mg levodopa/decarboxylase inhibitor before surgery, and with and without subthalamic deep brain stimulation at 3 months post-surgery. The pattern of (13)CO(2) excretion curve was analysed. To evaluate potential factors related to the effect of subthalamic deep brain stimulation on gastric emptying, we also examined the association between gastric emptying, clinical characteristics, the equivalent dose of levodopa and serum ghrelin levels. The peak time of (13)CO(2) excretion (T(max)) values for gastric emptying in patients without and with levodopa/decarboxylase inhibitor treatment were 45.6 ± 22.7 min and 42.5 ± 13.6 min, respectively (P = not significant), thus demonstrating levodopa resistance. The peak time of (13)CO(2) excretion (T(max)) values without and with subthalamic deep brain stimulation after surgery were 44.0 ± 17.5 min and 30.0 ± 12.5 min (P < 0.001), respectively, which showed that subthalamic deep brain stimulation was effective. Simultaneously, the pattern of the (13)CO(2) excretion curve was also significantly improved relative to surgery with no stimulation (P = 0.002), although the difference with and without levodopa/decarboxylase inhibitor was not significant. The difference in peak time of (13)CO(2) excretion (T(max)) values without levodopa/decarboxylase inhibitor before surgery and without levodopa/decarboxylase inhibitor and subthalamic deep brain stimulation after surgery was not significant, although motor dysfunction improved and the levodopa equivalent dose decreased after surgery. There was little association between changes in ghrelin levels (Δghrelin) and changes in T(max) values (ΔT(max)) in the subthalamic deep brain stimulation trial after surgery (r = -0.20), and no association between changes in other characteristics and ΔT(max) post-surgery in the subthalamic deep brain stimulation trial. These results showed that levodopa/decarboxylase inhibitor did not influence gastric emptying and that subthalamic deep brain stimulation can improve the dysfunction in patients with Parkinson's disease possibly by altering the neural system that controls gastrointestinal function after subthalamic deep brain stimulation. This is the first report to show the effectiveness of subthalamic deep brain stimulation on gastrointestinal dysfunction as a non-motor symptom in Parkinson's disease.
    Brain 04/2012; 135(Pt 5):1478-85. DOI:10.1093/brain/aws086 · 10.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Functional, molecular and genetic neuroimaging has highlighted the existence of brain anomalies and neural vulnerability factors related to obesity and eating disorders such as binge eating or anorexia nervosa. In particular, decreased basal metabolism in the prefrontal cortex and striatum as well as dopaminergic alterations have been described in obese subjects, in parallel with increased activation of reward brain areas in response to palatable food cues. Elevated reward region responsivity may trigger food craving and predict future weight gain. This opens the way to prevention studies using functional and molecular neuroimaging to perform early diagnostics and to phenotype subjects at risk by exploring different neurobehavioral dimensions of the food choices and motivation processes. In the first part of this review, advantages and limitations of neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), pharmacogenetic fMRI and functional near-infrared spectroscopy (fNIRS) will be discussed in the context of recent work dealing with eating behavior, with a particular focus on obesity. In the second part of the review, non-invasive strategies to modulate food-related brain processes and functions will be presented. At the leading edge of non-invasive brain-based technologies is real-time fMRI (rtfMRI) neurofeedback, which is a powerful tool to better understand the complexity of human brain–behavior relationships. rtfMRI, alone or when combined with other techniques and tools such as EEG and cognitive therapy, could be used to alter neural plasticity and learned behavior to optimize and/or restore healthy cognition and eating behavior. Other promising non-invasive neuromodulation approaches being explored are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct-current stimulation (tDCS). Converging evidence points at the value of these non-invasive neuromodulation strategies to study basic mechanisms underlying eating behavior and to treat its disorders. Both of these approaches will be compared in light of recent work in this field, while addressing technical and practical questions. The third part of this review will be dedicated to invasive neuromodulation strategies, such as vagus nerve stimulation (VNS) and deep brain stimulation (DBS). In combination with neuroimaging approaches, these techniques are promising experimental tools to unravel the intricate relationships between homeostatic and hedonic brain circuits. Their potential as additional therapeutic tools to combat pharmacorefractory morbid obesity or acute eating disorders will be discussed, in terms of technical challenges, applicability and ethics. In a general discussion, we will put the brain at the core of fundamental research, prevention and therapy in the context of obesity and eating disorders. First, we will discuss the possibility to identify new biological markers of brain functions. Second, we will highlight the potential of neuroimaging and neuromodulation in individualized medicine. Third, we will introduce the ethical questions that are concomitant to the emergence of new neuromodulation therapies.
    03/2015; 26. DOI:10.1016/j.nicl.2015.03.016